ALT-index: A Hybrid Learned Index for Concurrent

Memory Database Systems

Yuxin Yang?, Fang Wangt, Mengya LeiT, Peng Zhangt, Dan Feng

tHuazhong University of Science and Technology
T Hubei University of Technology

41st IEEE International Conference on Data Engineering, Hong Kong SAR, China, May 19-23, 2025

Outline

4

L/

» Background

&

L)

» Motivation

L)

4

L)

* Design

*

s+ Evaluation

Database System

<+ Disk-Based Database

> Low performance with large capacity R

My L PostgreSQL

» Disk friendly index structure (e.g. B+tree)

* Memory-Based Database

&B redis
vvv%v

» Efficient in-memory index structure (e.g. Adaptive Radix Tree) VOLTDB

» High performance with limited space

MEMCAHCHED

In-Memory Index Structure

* Traditional Index (Node based)

Search 37
» Slow lookup performance

» High space overhead

Traditional Index Learned Index

> Efficient SMOs for insert

\ node traversal J prediction
< Learned Index (Model based) 3112(21(33|37/47 (49|51 3112|21/33|37/47!49|51
€ »
accurate position ' errorrange

» Fast lookup performance

» Low space consumption

Traditional

» Costly retraining for insert

C1: Can we burn the candle at both ends?

s Adaptive Radix Tree * Learned Index
> Slow lookup Q » Fast lookup @
» High memory consumption Q » Low memory consumption@
» Good insert performance @ > Bad insert performance 0
Lookup-only (MOPS/s)|Insert-only (MOPS/s)

*ALEX+ 136.65 26.33

*LIPP+ 173.54 4.02 @ + o = @

*FINEdex 62.91 18.08

*Xindex 70.75 14.60 ¥’ A: Hybrid Learned Index !

*ART-OLC 90.80 34.32

*|learned indexes *traditional indexes

C2: Limitation of Learned Index

* Prediction Errors in Existing Learned Index

> Write bottleneck » Secondary search bottleneck
£ Insert data [used siot [_] Empty slot {8 Prediction error) Secondary search
Insert Model
l 4 Lookups Lookups Model\
|_|_ | | | | | | | | Insert Model +

oteconfict nogs) CT £ £
[l I

0 L.

LIPP+ ALEX+ \)
Write amplification Secondary search
Create conflict node: 40.7% Data shift: 25.2% FINEdex & XIndex perform poor in lookups.

6

ALEX+ saturate the memory at 16~32 threads!

C3: Limitation of ART

s Complex Issues in ART

> Long traversal length > Block problem

Long length traversal Q Blocked sibling nodes Q

All traverse common nodes! Insert with scheme blocks nodes7!

Our Solution: ALT-index

< ALT-index Overview

@

@

©)

Hybrid Construction

» Two layer design

» Conflict dataflow

Learned Index Layer

> GPL algorithm

» Dynamic retraining

Optimized ART Layer

» Fast pointer buffer

[Upper Modele-tree node)]

‘,--"""‘

GPL Model GPL Model GPL Model

Fast Pointer Buffer
{Nodﬂ_ptr Node3 _ptr[NodaB_ptr \
>|r.1L] Node1] W,

LA™
;
\
A
L]
;
«

ML [Node2 [ML Node3 }

v

[ML]NodedaHML} Node5 HML}«ode&] |ML]Node7] ‘ML] Nodes |

match level

©,

| | Jafe] xopu| pausean J

19he 1do-1yVY

O1: Hybrid Construction

* Two-layer Design

» Learned Index Layer
v' Lookup operations

v In-place insert operations

] CP
Register

VAT N

Latency

» Adaptive Radix Tree Layer

—
—
—
-
-—
-
—
—
-
-—
i
-—
-

Learned Index
Adaptive Radix Tree DRAM

v Lookup operations after insert

v' Out-of-place insert operations

Latency

| ‘q

In-place | Out-of-place
Lookup insert insert
Learned Fast Fast Slow x
Index
ART Slow x None x Fast

O1: Hybrid Construction

<+ Conflict Dataflow

» Learned Index Layer » Adaptive Radix Tree Layer

Learned Index Model Conflict Insert

Linear Function

ﬁll

In-place Insert

v

Conflict Insert

Decouple operations to the corresponding layer

10

O2 : Learned Index Layer

< Segment Algorithm

» Old algorithm » GPL algorithm Point 5 lower error

become bigger

A
Position
—@— ideal —&@— real —— new slope

- - - old slope

y

/

A
Position

1
i upper_enfor
]
1
”
1 >
s
5 ower_error

Point 4 updates slope

A

1 Key

A
7

Key

Consider max error Consider every error @

Over 50% data have prediction conflicts on avg. Only 30% data have prediction conflicts on avg.

O2 : Learned Index Layer

* Dynamic Retaining

empty slot

. used slot

@ dynamic retraining

Old GPL model

Ebitmapi false E false

potential writeback slot

Old GPL model

. writeback slot

New GPL model
bitmap true m
slot 0 n

@ finish retraining

] []
! false »-})--

Evict old model

@ insert 38 g
(® writeback 43
Old GPL model New GPL model
bitmap bitmap| false | false true | true | true
bitmap true
slot slot 0 0 0 0 0
slot 0

New GPL model \

Evict 37, Insert 38 to ART

® insert 47
Old GPL model New GPL model
bitmap false | false »bitmap| false | false 2
slot 0 0 slot [0 0 [o\

Evict 55, Insert 47

Writeback data from ART

Writeback 43 to potential slot

Layer

O3 : Optimized ART Layer

@ Conflict insert to ART:0xabefd100

GPL model 0 GPL model 1 GPL model n-2 GPL model n-1 GPL model n
first key: Oxabcd1000 | | first key: 0xabcd2000 first key : Oxabefc100| |first key : Oxabefc200 | (first key : 0xabfa0000

> Build fast pointers (et vt) e bdexaﬂerkﬂﬂ ncexo |

<+ Fast Pointer Buffer Scheme

/
/ Fast Pointer Buffer
v Cut down traversal length der | 6 : - - ® Create new fast pointer
=
offset | OXfFff0001 |OxFfff0002| .. |OxFfff0005 | 0xFFf0008 Update f-index

N\

> Merge duplicated fast pointers \

offset:0xffff0001 gtpia 7 :
@Trigger structure modifications
between ART nodes

v Space efficient

prefix:ab

T

v’ Data consistency for ART SMOs

offset:0xffff0002 offset:0xffff0005

offset: 0xffff0009

prefix:cd

r.c

prefix afte

prefix:d100

Fffset: Oxffffoooq Fffset: Oxffffoooa

offset:0xffff0003 offset:0xffff0004

prefix:1000 prefix:2000 L prefix:100 J L prefix:200 J

Efficient ART traversal

13

Evaluation

< Environment

> Hardware?m

v Intel Xeon Gold 6240@2.60GHz x 2

v 186GB DDR4 Memory

> Software
v GCC 9.4.0, CMAKE 3.16 with O3 optimization

v 4 real-world datasets

» Competitors ﬂ

v

v

v

ART [DaMoN ‘16]
ALEX+ [VLDB’22]
LIPP+ [VLDB’22]
FINEdex [VLDB’21]

XIndex [PPoPP’21]

14

Throughput & Tail Latency

(a)

Throughput: Read-Only

B ALT-index

(b) Throughput: Read-Heavy

= ART

B ALEX+ B LIPP+

(¢) Throughput: Read-Write-Balanced

I FINEdex

B XIndex

(d) Throughput: Write-Heavy

Fast pointer

(e) Throughput: er}é)nly

501

Throughput(million ops/sec)

€]

Tail latency: Read-Only

Throughput(million ops/sec)

(g) Tail latency: Read-Heavy

Throughput(million ops/sec)

Throughput(million ops/sec)

(i) Tail latency: Write-Heavy

Throughput(million ops/sec)

(j) Tail latency: Write-Only

P99.9 Latency(us)

\

Low tail Iatenc%j ®

i ‘
N3 &

P99.9 Latency(us)

P99.9 Latency(us)

& W
S
[\o&a

P99.9 Latency(ps)

120

40

ALT-index improves the throughput by 1.9-2.3x on average.

15

Robustness

[ALT-index N ALEX+ [N LIPP+ [FINEdex [XIndex I ART —B— ALT-index —m— ALEX+ —m— LIPP+ —m— FINEdex —m— XIndex
1011 (a) Memory overhead (b) Hot write throughput (c) Short scan throughput 595 (d) Varying init size throughput A e) Skewed workload throughput
) £ o B |) ‘ ‘
215 2 2 1004 g 2 .
10 2 e 2 = —— o —
’d—v))\ 10 - ot g 801 .\ -'—\. g ! H ./. i/
= g) [CCTCRRRT R S — :9 = L= 601 m W i'—‘ :
5 = Z4n “1E 60 E ——
2 = \g B o = 404" —__.g.-.—-!'.'—'—'.
5 5 : . : ; :
5 1l ESl I BN Bl B e
2 52 £ 2 A
g £ 2 204 g 20
E = = =
108! 0 0 0 : : 0 <
0 O & & 20 60 100 140 180 0.50 0.60 0.70 0.80 0.90 0.99
Sy o \OQQO Init Table Size (million keys) Zipfian Theta

T

Memory Overhead Hot Write Short Scan Init Size Skewness

ALT-index performs Good Robustness under different scenarios.

16

Other Analysis

Length (Bytes)

B Without buffer BT With buffer I Without merge [With merge

10

oo

Bl ALT-index I FINEdex
B ALEX+ B Xlndex
B Lower layer [Upper layer BN LIPP+

(¢) Data distribution in two layers 6 0(d) Bulkload time on various datasets

(a) Average lookup length in ART 5006 (b) Number of fast pointers

15001

. [-

o 8 =

§ 1000 K] g

Z g =
a

500

0

Merge Scheme Data Distribution Bulkload Time

Lookup Length

ALT-index minimizes the expense of hybrid design.

17

Conclusion

< Traditional Index Learned Index

» ART has good write performance

» Learned Index has good read performance

s ALT-index Design: A Hybrid Learned Index

» Two-layer construction
» Optimized learned index layer

» Optimized ART layer

ALT-index: A Hybrid Learned Index for Concurrent
Memory Database Systems

Yuxin Yang', Fang Wang ", Mengya Lei®, Peng Zhang' and Dan Feng'
! Withean National Laborawory for Opwelectronics, Key Laborawory of iformation Storage System,
Englneering Research Center of dasy smovage sysiems and Technobogy, Ministry of Educenton of Chiva,

Sehonl of Computer Seience ad Technalogy, Huehong University of Science and Technology, Widan, China
2 Hubsei Uiversity of Tochmelogy, Widhan, Chise
ISheirzheis Hisathong Univerdry of Sclence and Technology Research Tnaince, Sheizhen, China
{yuxinyang, wangfang, hangpengl®, dfeng}@ hust.edu en, lmy_up@hiut educn

Abzimcie=The kamed index technique has been widely cxe
plored @ @ stong competitor to troditional indeves. 1t adopts
static learning-basal modeks to fit the distribution of sorted data
and locate keys through predictions, which shows outstanding
query speed. However, frequent retraining is required when it
comes (o congurrent inserfion scenarios. Despite existing studies
introducing sparse slots and delta buffers to mitigate this elfed,
the readewrite performance of the learned index still falk short
af expectations, espedally in concurment conditions.

In this paper, we first propose 2 novel hy brid index scheme that
combines a readeefficient learned index with an inserteefficient
Addaptive Radix Tree (ART) to realiee high perfornance for
read-write soenarios. However, it & not trivial due & expens
sive mudel prediction errors, complicated model hierarchy, and
medundant node traversals. Therefore, we then introduce ALT:

Function {CDF) curve of the dataset. Once a leamed index
is trained, each model can predict the position of a given key
with O 1) complexity. Typically, the average read performance
of a leamed index is | $x-3x fasier than deat of 2 B-iree [1].

However, when dealing with insertion and concurrent sce-
nafos, the leamed index has limited performance. To be
specific, the satc leamed models require a blocked retsaining
process 1o handle insenions. The retraining process is expen-
sive especially when the insemioms and read-retrain conflicts
incresse in the concument conditions. Our experiments find
that existing leamed indexes’ performance decease 68.2%-
93.4% caused by insemions with 32 threads under read-write-

index, an efficiet hybrid learned index with high -
for memory datasbase systems. ALT-index highlights a delicate
‘twoetier architecture where linear data are stored in the learned
index without prediction ermors and conflict data are hosted in
the lower biyer @s an optimized ART. Besides, we develop a
Gredy Pesimistic Linear (GPL) algorithm to support fattened
data structures for concurrency. In the optimised ART laver,
we introduce a fast and compact puinter buffer to further
imaprave the averall pedformance. Experimental resulls conducted
on various real-world datasets with 32 threads illustrate that
AlLTindex inproves performance by up to L9%, 21x, and 23k
compared with ALEX+, FINEdex, and Xindex in read-write-
alanced scenarios, respectivey.

Index Tamz—Memaory database, Index structure, Learned
inadex

L INTRODUCTION

Index structures are the fundamental components that sup-
part fast dat access for memory databases, Recemly, there
has bseen a surge of interest in Leamed Index [1], which aims
o supplant raditional indexes (such as B-tree) with machine
leaming models o improve index efficiency. The core idea
of the kamed index is using learning-based models 1o fit de
distribution of soned data and locate keys through predictions,
which significantly minimizes query and space overhead. To
train a leamed index. the datsser will be stored and partitimed
into several segments. These segments will be the input o rain
mltiple models that approdimate the Cumulative Distribution

* Comesprading aubor

I b e kload I 1 1o read-only kloads.

Existing sudies explore techniques such 2 using deha
buffers [2H4] and reserving sparse slas [SH{7] to improve
insertion performance of the learned index. Nevertheless, deha
buffess require merging overflowed buffers with the leamed
models through the working or background threads, which
becomes a significant botdeneck when the concumency scales
out. Reserving spase slots in a model is ancther way 1o
accommadae insenions. However, when there is no empty slot
available for insentions, existing sudies camot gain high read-
write performance nesulting from read-wrike blocking [5] or
cache invalidaton [6]. Untl now, none of the existing designs
can fully solve the nsertion issue of the leamed indesx.

Different from the leamed indes, the Adaptive Radix Tree
{ART) [8], ene of the waditional indexes, is renowned for its
outstanding insent performance [91-[11]). ART is an optimized
trie tree structure that employs a dynamic node ini:
mize the ree height and gain efficient insertions.
ART exhibits inferior pe formance under read-only workloads
compared with the leamed index [2}-[6]). Therefore, an initial
two-tier idea arises: we can place ART under the leamed index
1o handle insemions, which prevents the loss of concurment
read-wrike performance caused by insemions in the leamed
index. In addition, the previous mosdel located in the leamed
index can accelerate queries of ART, and it is not straightfor-
ward 1o wilize the hybrid leamed index effectively due i the
following challenges.

 ALT-index can take full advantage of both Learned Index and ART

Paper

18

41st IEEE International Conference on Data Engineering, Hong Kong SAR, China, May 19-23, 2025

19

