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Abstract—Distributed file systems (DFS) are the cornerstone
of modern mass data processing systems. In DFS, the metadata
service, as the core component, often becomes a performance
bottleneck. Existing metadata service solutions have implemented
flattened metadata management and full-path indexing to achieve
high scalability in terms of capacity and throughput. How-
ever, these approaches have limitations, such as conflicts with
POSIX-style permission verification and flawed support for super
directories, leading to high and unstable latency that cannot
provide reliable service for latency-sensitive applications. To
overcome these limitations, we propose Duplex, a scalable DFS
metadata service based on full-path indexing, which aims for
low and stable latency. Duplex incorporates three key designs:
a fast access path featuring a centralized permission server for
efficient permission verification, a permission merging algorithm
to reduce the PMS’s space footprint, and flattened metadata
management based on double consistent hashing that enables low-
latency access to super directories. Our evaluations demonstrate
that, compared to state-of-the-art metadata solutions, Duplex
significantly reduces the average lookup latency by up to 84%
and the 99th percentile tail latency by up to 88.2% for metadata-
intensive benchmarks. Additionally, Duplex improves the lookup
IOPS by up to 7.6× /2.3× compared to CephFS and BeeGFS.

Index Terms—Distributed file system, Metadata Service, La-
tency, Full-path Indexing

I. INTRODUCTION

Due to high throughput, high scalability and high avail-

ability, the large-scale distributed file system (DFS) has been

widely deployed in modern data centers to serve data-intensive

applications, e.g., big data analytics [4], high-performance

computing (HPC) [5], cloud computing [7], [11], AI training,

and web applications. These scenarios can be classified into

two categories, throughput-sensitive applications and latency-

sensitive applications. Throughput-sensitive applications, such

as checkpointing for HPC and batch access for AI training,

require storage backends with high I/O throughput and scal-

able capacity. Conversely, latency-sensitive applications, such

as financial storage and interactive VR/AR/MR, demand low

and stable operation latency to meet stringent service-level

objectives (SLOs).

In DFS, metadata access is on the critical data path and

accounts for more than half of all system accesses [3].

Consequently, the metadata service is always a performance

bottleneck [13], [4], which is particularly problematic for

large-scale DFS with petabyte-scale metadata volumes in

modern data centers [3]. To achieve high scalability in terms of

This work was supported by NSFC (No. U22A2027, 61832020, 61821003)
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capacity and throughput, current metadata solutions tend to use

full-path indexing based on flattened metadata management.

Flattened metadata management uses hash algorithms and key-

value databases to manage metadata in a unified flattened

namespace, building a flexible and scalable storage architec-

ture for metadata [9], [12]. The full-path indexing method

is based on flattened metadata management. It uses the full

path of files as indexes, shortening access path and increasing

throughput [20]. However, despite their success in achieving

scalable capacity and throughput, these techniques face two

challenges in meeting latency service-level objectives (SLOs)

for latency-sensitive applications:

• Conflict between permission checking and full-path in-
dexing. In POSIX-compatible file systems, each component

has its own permissions. Once a file is requested, the file

system checks permissions using a component-based method,

which splits the pathname into components (separated names

of directories and files) and traverses them sequentially in

the hierarchical directory tree [10]. However, in large-scale

DFS, the directory tree is distributed across multiple metadata

servers (MDS), requiring the metadata traversal to go through

multiple hops among MDSs, resulting in high latency for

remote access. The hierarchical permission mechanism negates

the performance gain from the full-path indexing method.

To shorten latency, state-of-the-art schemes use parallel path

resolution to access permissions of all components on the same

path in parallel [12], [13]. However, this approach maintains

many network connections with varying delays when access-

ing deep files, still suffering from long tail latency.

• Unpredictable latency in super directories. The flattened

metadata management prototypes treat each file as a separate

object and distribute them across multiple MDS, resulting

in high load balance but damaging spatial locality. Unfortu-

nately, spatial locality is crucial for file system performance,

particularly for range operations performed at the directory

level such as ls and rmdir. To balance spatial locality and

load balance, current flattened metadata management schemes

distribute metadata at the directory level or directory subset

level, instead of in single-file granularity [16], [12], [15].

However, these approaches result in access hotspots and long

tail latency for super directories that contain a large number

of files.

To address the issues incurring high and unpredictable

access latency, this paper presents Duplex, an innovative

metadata service for large-scale DFS. Duplex aims to deliver
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low and stable manipulation latency for latency-sensitive appli-

cations while maintaining scalable throughput and capacity for

throughput-sensitive applications. The solution includes three

key designs to optimize the indexing mechanism and metadata

management. First, Duplex adopts a novel metadata service

architecture with a dual access path approach, featuring a fast

path with low latency and a slow path with high through-

put. Both paths support complete POSIX-style permission

verification. The fast path includes a dedicated permission

server (PMS) that caches all directory permissions from the

MDSs, enabling requests from latency-sensitive applications to

complete permission checks quickly. Second, Duplex proposes

a tree-based permission merging algorithm to improve the

space efficiency of the single-node PMS, preventing the PMS

from being the system capacity bottleneck. Third, Duplex uses

a novel flattened metadata management scheme that distributes

directory subsets among the MDS clusters by double consis-

tent hashing (DCH), providing low and stable access latency

even for deep files and super directories.

In summary, this paper makes the following contributions:

• Identification of the limitations present in state-of-the-art

metadata service schemes when aiming to achieve stringent

latency SLOs (§II).

• Introduction of a novel metadata service solution, named

Duplex, featuring an innovative architecture comprising a

fast path and a slow path catering to latency-sensitive and

throughput-sensitive applications, respectively (§III-A). On

the fast path, Duplex incorporates a dedicated yet non-

scalable PMS equipped with a permission merging algo-

rithm to facilitate rapid permission checks (§III-B). On the

slow path, the MDS cluster adopts a novel flattened metadata

management scheme that leverages parallel path resolution

to achieve scalable throughput (§III-C).

• Implementation of Duplex in a distributed cluster based on

the IndexFS source [16] and comprehensive performance

evaluations comparing it with state-of-the-art metadata ser-

vice designs (§IV).

II. BACKGROUND AND MOTIVATION

Large-scale distributed file systems (DFS) are designed to

efficiently store and manage vast volumes of data across

numerous networked nodes [14], [19]. These nodes collaborate

to provide a unified file system view for multiple clients. In

the context of DFS, metadata refers to essential information

that describes the structure and location of files and directories

within the system, encompassing details like names, attributes,

ownership, and physical location. Extensive research has

demonstrated that metadata operations are highly prevalent

within DFS, with statistics showing that 50% to 80% of all

file system accesses involve metadata-related actions [1], [3].

Consequently, the efficient provision and management of high-

quality metadata services are of paramount importance for

optimizing the overall performance of DFS.

A. Traditional hierarchical metadata service
Traditional file systems organize metadata using a hier-

archical tree-based structure. The directory tree comprises

directories that serve as containers for both files and sub-

directories. In this structure, branch nodes are directories,

while leaf nodes represent files. GoogleFS [4], for instance,

manages the entire directory tree within a dedicated MDS.

However, this centralized approach can lead to performance

bottlenecks and scalability challenges. To enhance scalability,

some DFSs distribute the metadata service across multiple

servers at the subtree level [13], [19]. The directory tree is

divided into multiple subtrees, with each subtree assigned

to a distinct server for management. However, this method

results in imbalanced workloads among MDSs, particularly

when workloads dynamically change [17].

Hierarchical metadata services rely on the component-based

lookup method. When a client needs to access file metadata,

it divides the file path into multiple components (separated

by ”/”) and sequentially traverses the directory tree layer

by layer, starting from the root directory and progressing

toward the target file [10]. While this approach is effective

in local file systems, it poses challenges in DFS. Traversing

a path involves multiple MDSs and incurs substantial remote

overhead, contributing to increased file access times [16], [9].

Moreover, the component-based lookup method can lead to

access hotspots in DFSs due to the need to access the root

directory for every operation.

To address the limitations associated with hierarchical

metadata management and component-based lookup method,

flattened metadata management and full-path indexing method

have been proposed.

B. Flattened metadata management
In contrast to tree-based distribution, a flattened metadata

service distributes metadata across different MDSs using ran-

dom algorithms like hashing. Typically, each metadata server

manages its local metadata in a single table or database.

Flattened metadata management offers increased flexibility

and efficiency in metadata operations, particularly in large-

scale systems. File system operations, including file lookup,

creation, and deletion, can be performed more efficiently due

to easier access and modification of metadata. Furthermore,

this approach simplifies metadata distribution across multiple

servers, resulting in enhanced scalability and fault tolerance.

LocoFS [9] represents a typical flattened metadata service

for DFS, which transforms directory tree metadata into sepa-

rate objects stored in key-value databases. This transformation

leads to reduced latency and increased throughput. However,

LocoFS distributes metadata at the file granularity, sacrificing

the spacial locality of directories. Range operations at the

directory level, such as ls and rmdir, rely on a single-

node directory metadata server, limiting scalability. InfiniFS

[12] improving range operation performance by distributing

metadata at the directory granularity, ensuring that files within

the same directory are on the same MDS. However, this

approach does not adequately consider the challenges posed by

super directories. In large-scale file systems, super directories,

which contain millions of files, can create significant activity

hotspots when assigned to a single MDS. To mitigate this, Patil

et al. introduced GIGA+ [15], a system that partitions super
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directories into subsets and distributes them across different

MDSs. IndexFS [16] adopted this approach to achieve high

scalability and balanced workloads. However, GIGA+’s client

often communicates with multiple MDSs to obtain the desired

mapping for locating files within a super directory, resulting in

increased latency. Hence, current flattened metadata manage-

ment schemes struggle to meet stringent latency SLOs when

accessing super directories.

C. Full-path indexing method

The full-path indexing method, facilitated by flattened

metadata management, stands in contrast to the traditional

component-based lookup method, which relies on parent-child

relationships between directories. In the full-path indexing

method, all files and directories reside within the same flat-

tened namespace, allowing for rapid lookup and retrieval of

files based on their complete path [20], [8]. While the full-path

indexing method holds promise in reducing lookup latency,

it encounters challenges in file systems due to conflicts with

the POSIX-style permission mechanism. In systems adhering

to POSIX standards, permissions are managed through a

component-based method, where each directory or file pos-

sesses its individual permissions. The file system determines

the final permission for a file by traversing the components

along the file path and sequentially checking their permissions.

Given the critical role of permission checks in maintaining se-

curity, the permission query still necessitates traversal through

hierarchical components, negating the performance advantages

offered by the full-path indexing method. Consequently, rec-

onciling conflicts between full-path indexing and POSIX-style

permissions presents a formidable challenge [2], [18].

Several research efforts have been dedicated to addressing

this challenge. One approach involves storing the complete

set of permissions with each file. For example, CalvinFS [18]

associates all ancestor directory permissions with each file to

support hierarchical access control in the POSIX standard.

While this approach eliminates the need to traverse the entire

directory tree to check distributed permissions, it introduces

significant storage overhead due to redundant permission

metadata in large-scale DFS deployments. Besides, modifying

directory permissions, particularly for directories closer to the

root, entails recursively propagating the new permissions to

all descendants of the modified directory. Another solution

is parallel path resolution, as employed by InfiniFS [12] and

HopsFS [13]. These systems use parallel path resolution to

access the permissions of components along the file path

simultaneously. Consequently, a file access operation can be

completed within a single round-trip time (RTT). However,

when accessing deeply nested files, the client likely maintains

hundreds of remote connections for one request, incurring

huge overhead on CPU and network. Furthermore, network

conditions in practice may not be consistent across different

nodes, and the latency of parallel path resolution depends on

the longest RTT. Regrettably, these full-path indexing methods

are unable to guarantee strict latency SLOs.

Sync

Fig. 1. Architecture of Duplex

III. DESIGN

This paper introduces Duplex, a scalable filesystem meta-

data service with full-path indexing, featuring three key design

elements. To address the conflicts between full-path indexing

and POSIX-style permission mechanisms, Duplex employs a

novel architecture that offers a fast access path for latency-

sensitive applications and a slower path for throughput-

sensitive applications. The fast path integrates a dedicated

Permission Server (PMS) that caches directory permissions

to expedite permission queries (§III-A). Additionally, Duplex
incorporates a tree-based permission merging algorithm for

the PMS to reduce its space footprint (§III-B). Lastly, it

utilizes a scalable flattened metadata management system that

prioritizes both balance and locality, ensuring rapid access to

super directories (§III-C).

A. Architecture
Figure 1 illustrates the architecture of Duplex, consisting of

three primary components:

Metadata Servers (MDSs) play a pivotal role in Duplex,

responsible for distributed metadata services. The directory

tree is managed across MDSs through a flattened directory-

subset-grained distribution scheme. To optimize performance,

metadata resides in the memory of MDSs, with metadata

updates recorded as logs persisting in local levelDB storage

for reliability.

Permission Server (PMS): Duplex decouples directory data

into contents (timestamp, size, and child list) and permissions

(user, group, and mode). During initialization, directory per-

missions are copied from the MDS cluster to a dedicated

permission server (PMS). Hierarchical directory permissions

are centrally managed by the PMS to facilitate permission

checks. By providing the full path of a designated file, the

PMS verifies the permissions of the file’s ancestor directories

and returns the result. Duplex employs a write-through mode to

maintain consistency between the MDS cluster and the PMS.

Any update to directory permissions is first applied to the MDS

cluster and then synchronized with the PMS, ensuring crash

consistency. In case of the PMS crash and restart, hierarchical

permissions can be reconstructed from the MDS cluster.

Client: Clients of Duplex execute file system operations

through the userspace client library libduplex. Clients support
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two access methods: a fast path, which offers low latency but

limited scalability, and a relatively slower but more scalable

path.

• Fast path. In the fast path, the PMS handles permission

checks, and the target file is retrieved from the MDS cluster

based on the full path. Figure 1 illustrates an example where

a client accesses /B/C/f1 using the fast path. Initially, the

PMS verifies the permissions of the path /B/C (�), while

the MDS cluster verifies f1’s permissions (�). Only after

passing both checks can the client access the desired file

metadata from the MDS cluster. The two permission checks

can be processed in parallel, further reducing the access

delay.

• Slow path. The slow path in Duplex caters to throughput-

sensitive applications that can tolerate higher latency. This

path allows clients to bypass the PMS and access the

MDS cluster directly through parallel path resolution. For

instance, when accessing /B/C/f1, clients on the slow path

access multiple components in parallel, including / (�), /B
(�), /B/C (�), and /B/C/f1 (�). Only after successfully

passing all permission checks can the client retrieve the

metadata of /B/C/f1 from the MDS cluster.

B. Tree-based permission management
The design of the PMS effectively mitigates permission

overhead. However, the single-node PMS storing permission

metadata for the entire system has scalability limitations. To

address this challenge, Duplex employs two methods to en-

hance the space efficiency of the PMS and enable it to support

large-scale DFS deployments: storing only directory permis-

sions (§III-B1) and merging identical permissions (§III-B2).

As the organization of permissions changes, the processing

flow of permission operations also adapts (§III-B3).

1) Storing directory permissions only
The PMS exclusively manages directory permissions since

clients can retrieve file metadata, including file permissions,

from MDSs using full-path indexing. Given that directory

metadata accounts for less than 1
10 of the entire file system

metadata [3], and permissions represent only a fraction of

directory metadata, directory permissions constitute a mere 2%

of the total metadata volume in Duplex.

Figure 2(b) illustrates how the PMS extracts directory

permissions from the directory tree. The directory tree depicted

in Figure 2(a) comprises 9 directories with four types of

permissions and 5 files. The PMS eliminates unnecessary

metadata, such as file metadata and directory contents, retain-

ing only directory permissions, as shown in Figure 2(b). This

representation is referred to as the permission tree in this paper.

2) Merging identical permissions.
Duplex introduces a permission merging algorithm to further

reduce storage requirements. In file systems, subdirectories

typically inherit the same permissions as their parent directory.

This characteristic is leveraged to eliminate redundant permis-

sions from the permission tree. The process from Figure 2(b)

to Figure 2(c) illustrates the consolidation of a permission tree.

Initially, entries with permissions identical to their parent are

stat /C/G
chmod –r /C

chmod /A

Fig. 2. (a) The original directory tree; (b) The initial permission tree generated
from (a); (c) The merged permission tree from (b); (d) A lookup and a
recursive update to (c); (e) A non-recursive update to (c).

pruned from the tree, resulting in the retention of 4 directories:

/, /A/E, /C, and /C/F/H. Subsequently, path prefixes that

match parent paths are omitted. The node indexes transform

into /, A/E, C, and F/H. The resulting permission tree adopts

the form of a radix tree (or compact prefix tree), which is an

efficient data structure for storing and retrieving strings [6].

3) Processing permission operations.
This section illustrates how the permission tree handles per-

mission operations, emphasizing that these operations pertain

exclusively to directories since the PMS manages directory

permissions exclusively.

A. Lookup. Permission lookup stands as one of the funda-

mental and critical functions, as it should be performed before

any metadata request to ensure safety. The PMS conducts

lookups using a top-down prefix matching process, resembling

a radix tree. If a node ID matches the prefix components of

the requested pathname, the PMS enters the node to perform

further prefix matching. The lookup process concludes when

no node matches the remaining pathname. Figure 2(d) provides

an example of querying the permission for directory /C/G.

The PMS successively accesses nodes / and C. However,

none of the children of C matches the remaining path G.

Consequently, the PMS determines that G shares the same

permission with C, and thus, it checks the permissions of /
and C.

B. Insert. Analogous to the lookup operation, the PMS pro-

cesses insert operations through a top-down prefix matching

process. When the search reaches the nodes that match the last

components of the inserted pathname, three possible scenarios

arise. First, if the node matches the inserted pathname exactly,

an error is raised because the directory to be added already

exists. Second, if the permissions of the current node are

identical to the inserted permissions, no updates are made,

as the new permission duplicates that of its parent. Third,

if the permissions differ, a new node is created as a child

of the current node. The new node’s ID corresponds to the

remaining directory pathname, and its value represents the new

permission. For example, if a client inserts directory /A/E/I
with distinct permissions from /A/E in Figure 2(c), a new

node I will be generated as the child of /A/E.

C. Remove. Removing a directory necessitates the recursive

removal of its children. For instance, the removal of directory

/C in Figure 2(c) involves removing nodes /C and F/H.
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Similarly, the removal of directory /C/F in Figure 2 entails

removing node F/H.

D. Update. Permission updates can be either recursive or

non-recursive. Recursive updates entail modifying the permis-

sions of all files and subdirectories beneath the given directory

to the same value. To accomplish this, the PMS consolidates

the involved directories into a single node. Therefore, a

recursive update operation is essentially a combination of

a Remove operation followed by an Insert operation. For

instance, operation � in Figure 2(d) recursively alters the

permissions of directory /C by initially removing it and

subsequently inserting it with the new permissions.

In contrast, non-recursive updates are more intricate, par-

ticularly when the updated directory has previously been

merged into the ancestor but must now be re-added as an

individual node. Figure 2(e) illustrates a non-recursive update

to directory /A in Figure 2(c). Firstly, the PMS creates a

new node if no node matches the directory’s pathname. In

the absence of a match, a node A is established as the child

of node / (�). Secondly, the PMS retrieves the permissions

of the subdirectories of the designated directory from the

MDS cluster and inserts them into the permission tree. As

a result, nodes D and E are added as children of node A
(�). Lastly, the PMS adjusts the permission tree using the

permission merging algorithm, which includes removing nodes

with identical permissions as their parents and reorganizing the

neighboring nodes of the manipulated node. In Figure 2(e),

node A/E is removed since it is redundant to E (�). The final

permission tree is presented at the bottom of Figure 2(e).

The merged permission tree enhances storage efficiency

and ensures the accuracy of permission operations. Moreover,

the permission merging algorithm reduces the depth of the

tree, resulting in fewer hierarchical searches and improved

permission performance.

C. Flattened metadata management
Duplex employs a novel flattened metadata management

approach to efficiently handle large-scale DFS metadata within

the MDS cluster. The distribution of the directory tree is

accomplished through three steps. Firstly, the directory tree is

partitioned into directories. Secondly, each directory is divided

into subsets, and file metadata is dispersed across the subsets

using consistent hashing (CH) (§III-C1). Finally, the subsets

are mapped to MDSs based on a second CH calculation

(§III-C2). Similarly, clients utilize double CH calculations to

index files from the MDS cluster, which is termed as DCH in

this paper (§III-C3).
1) Partitioning directories into subsets.
Some metadata services partition the directory tree at the

directory level, leading to activity hotspots in super directories

[12], [5]. To address this issue, Duplex divides directories into

finer-grained units called directory subsets.

Each directory is organized into one or more subsets. Figure

3(a) illustrates an example of partitioning a directory tree with

6 directories and 5 files into 7 subsets. Directory A is divided

into two subsets, while each of the other directories is managed

as a single subset. Determining the number of subsets for a

CH1(A/D/F0 , 3)  = 0
Access MDS 0 for f4

Return A/D/F/f4

CH1(A0 ,3)  = 1
Access MDS 1
Return n = 2
CH2(f1 , 2) = 1 &&
CH1(A1 , 3) = 2
Access MDS 2
Return A/f1

CH

Fig. 3. (a) Partitioning a directory tree into 7 subsets (Smax = 3); (b)
Distributing 7 subsets among three MDSs; (c) Accessing files from (b) through
DCH.

directory involves considering two key parameters: directory
size and maximum subset size. Directory size refers to the total

number of files, including sub-directories, within a directory,

denoted as DirSize. For instance, in Figure 3(a), directory A
contains 3 files: f1, C, and D, resulting in a DirSize of 3. The

maximum subset size, denoted as Smax, represents an upper

limit on the number of files a subset can contain. The number

of subsets required to partition a directory is calculated as

n = �DirSize/Smax� + 1. In the example of Figure 3(a),

with Smax set to 3, directory A is divided into two subsets

because its DirSize is 3, reaching the limit. Other directories

with DirSize less than 3 are each managed as a single subset.

A subset comprises three components:

• ID. Each subset is identified by an ID consisting of

two parts: the pathname of the corresponding directory to

distinguish subsets from different directories and a unique

number that increments from 0 to distinguish subsets within

the same directory. In Figure 3(a), the two subsets of A are

identified as A0 and A1, respectively.

• Size. The directory size is centrally stored in the master
subset (mSubset), which is the first subset (subset 0) of the

directory. Each directory has exactly one mSubset. In Figure

3(a), the size of directory A is stored in subset A0.

• Files. When a directory is divided into multiple subsets,

files within the directory are evenly distributed across the

subsets based on the CH results of their file names. As

shown in Figure 3(a), directory A has two subsets that contain

metadata for its children. For example, D is located in subset

A0 because CH(D, 2)=0, while f1 and C are in subset A1

because their CH values are 1. The use of CH ensures minimal

metadata migration when adjusting subsets due to changes in

directory size.
2) Distributing subsets among MDSs.
After dividing directories into subsets, Duplex distributes

these subsets among MDSs using a second CH algorithm. By

providing subset IDs as input, the subsets are assigned to the

respective MDSs. This secondary CH ensures load balance

and minimizes subset migration when adjustments are made

to MDS assignments. Figure 3(b) provides an example of

distributing seven subsets among three MDSs.
3) DCH for file indexing.
The mSubset functions as the fixed access entry point for

its corresponding directory. Figure 3(c) illustrates how files,

such as A/D/F/f4 and A/f1, are indexed in the MDS cluster.

Let’s first consider the example of A/D/F/f4. The client
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initiates access to the mSubset by default. The subset ID is

determined by combining the directory path with the subset

ID 0, resulting in A/D/F0. The client then employs a CH

algorithm to calculate the target MDS ID, which yields 0
(�). Subsequently, the client accesses MDS 0 (�). Since

A/D/F contains only one subset, the requested file, A/D/F0,

is successfully retrieved (�), completing the lookup process.

Next, let’s consider the example of stat A/f1. The first

two steps remain the same, where the client communicates

with the mSubset A0 on MDS 1 for the file A/f1 (� and

�). However, as the file is not in the subset, MDS 1 returns

the number of subsets instead of the desired file metadata.

Since Smax = 3 and the size of directory A is 3, which

is recorded in subset A0, MDS calculates that directory A
contains two subsets and returns n = 2 to the client (�). At

this point, the client employs the DCH method, which involves

two CH calculations to locate files. The first calculation (CH1)

determines the subset ID based on the file name, revealing that

file A/f1 is in subset 1. The second calculation is for the MDS

ID based on the subset ID. The client inputs A1 into CH2 and

determines that the target MDS ID is 2 (�). Finally, the client

retrieves file A/f1 from MDS 2 (� and �).

The DCH approach ensures that clients can access a file

within two RTTs, regardless of the file depth and directory

size.

IV. EVALUATION

In this section, we evaluate the performance of Duplex.

The evaluation is divided into two parts based on different

evaluation methods. In the first part, we use MDTest as

a benchmark to measure metadata operation performance,

including throughput, latency, and load balance (§IV-B). In

the second part, we compare different permission mechanisms

using static file system metadata collected from private pro-

duction servers (§IV-C).

A. Experimental Setting
Duplex is based on the IndexFS source code and im-

plemented in C++, comprising approximately 4k lines of

modified code. IndexFS is a distributed metadata service for

large-scale file systems, which uses GIGA+ [15] (a hash-based

management) to partition the directory tree and a component-

based lookup method to index files. We have entirely altered

metadata distribution and indexing methods while reusing

the LevelDB-based journal mechanism from IndexFS. All

experiments are performed on identical commercial machines,

each equipped with 24 processors and 32 GB of memory.

As shown in Table I, the nodes run CentOS 7.6 and are

connected by 40-GB InfiniBand networks with a round-trip

time of approximately 120 us. For optimal performance, we

employ ram-disks as the storage devices.

B. MdTest Benchmark
Comparison Schemes: In this section, we compare the

performance of four metadata services. The first scheme is

a 16-node CephFS, consisting of 16 OSDs and 16 MDSs.

All MDSs are active, resulting in a distributed directory tree

across the 16 nodes. The second metadata service scheme

TABLE I
ENVIRONMENT CONFIGURATION

Processor Intel Xeon CPU E5-2620 0 @ 2.10GHz * 24

Memory 32 GB

Storage RamDisk

OS CentOS Linux release 7.6.1810

Kernel 3.10.0-957.el7.x86 64

Compiler GCC 4.8.5 20150623

Network ConnectX Dual Port 40Gb/s InfiniBand

Fig. 4. Comparison of throughput (a) and latency (b) for CephFS, BeeGFS,
IndexFS, and Duplex (D-Slow and D-Fast) within a 16-node cluster for six
types of operations.

is BeeGFS [5] version 7.0, one of the leading parallel file

systems. BeeGFS consists of 1 manager process, 16 MDS

processes, and 16 storage processes on 16 physical nodes.

The third scheme is IndexFS [16], comprising 16 physical

nodes, each running an MDS process. All three schemes use

the component-based lookup method. The fourth scheme is our

Duplex with 16 MDSs and 1 PMS. The MDSs are deployed on

16 physical nodes, and the PMS is on MDS 0. Duplex is tested

both within the slow path (D-Slow) and fast path (D-Fast).
Benchmark: We use the MDTest benchmark tool, which

generates a highly concurrent stream of metadata operations on

a file system. We initialize MDTest client processes in parallel

across 16 nodes via MPI. Each MDTest process generates

100K requests across 512 directories with a depth of 9 in the

directory tree. We test six types of operations, including mkdir,

stat dir, rmdir, creat, stat file, and unlink. The first three are

directory operations, and the rest are for files. Since IndexFS’s

open-source code has not implemented rmdir and unlink, we

exclude these two operations from the IndexFS evaluation.

Besides, the difference between D-Fast and D-Slow is the

permission checking method, and they share the same process

of mkdir and rmdir. Hence, we exclude these two operations

from D-Fast evaluation. We compare the performance in terms

of throughput, load balance, and latency.

1) Throughput.
We conduct throughput tests by scaling the number of

MDTest processes from 1 to 64 per node to measure the max-

imum throughput provided by each scheme, with a maximum

of 16×64 = 1024 MDTest clients. The throughput results are
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displayed in Figure 4(a), with the x-axis denoting the six types

of operations, and the y-axis representing the corresponding

throughput of different schemes, where KOPS stands for 1000

operations per second.

We can make three observations from the figure:a) Duplex
significantly outperforms other schemes in terms of throughput

for file operations. The throughput of D-Slow is about 350

KOPS, which is 2.3 × −4.1× higher than that of BeeGFS.

The throughput performance benefits from the highly scalable

flattened metadata management. Duplex’s clients can directly

access target MDSs without cross-server coordination. b) For

mkdir and rmdir, the throughput of Duplex is only about 50

KOPS. This is because mkdir and rmdir update directory

permissions, requiring synchronization with the single-node

PMS, which becomes a throughput bottleneck for these oper-

ations. Although the throughput is relatively low, it is still over

2.3× higher than that of CephFS and BeeGFS. c) The lookup

throughput of D-Fast is also limited by PMS’s performance.

However, its throughput is higher than that of mkdir and

rmdir, since lookups occur with less concurrency overhead

to the PMS than updates.
2) Latency.
In this section, we present a comparison of the latency of

the four metadata service solutions. The experimental setup is

the same as in the previous section, except that we run only

one MDTest client process on each node to avoid congestion.

Figure 4(b) shows the average latency of the four schemes. The

x-axis denotes the six types of operations, and the y-axis is

the corresponding latency. The results show that Duplex with

the fast path consistently has the lowest average latencies for

all six operations when compared to the other schemes. In

particular, the stat latency of D-Fast is only 200 us, leading

to a reduction of up to 74.1% compared to CephFS and 41.9%

compared to BeeGFS.
3) Load Balancing.
In this section, we compare the load balancing capability

of the 4 schemes. We collect the number of inodes on each

of the 16 MDSs during the last experiment as MDSs’ loads.

Then, we normalize the loads to the average value. The load

distribution is shown in Figure 5, where the x-axis represents

the ID of the 16 MDSs, denoted by 1 to f in hexadecimal.

The y-axis shows the normalized loads on each MDS, where

their average value is 1. From the figure, we observe that the

loads of CephFS and BeeGFS are heavily skewed, as they

use tree-based partitioning with coarse partition granularity.

Differently, IndexFS and Duplex achieve almost full load

balance because they use hash-based partitioning.

C. Static file system traces
Benchmark: To evaluate our new permission mechanism,

we collected three static file system traces from our private

production servers. Each trace was collected by traversing

the directory tree from the root directory and accessing all

directories and files in the operating system. The trace in-

cludes the names and metadata of the directories and files

but excludes the file content as it does not affect the test

results. We collected three traces under different workloads:

Fig. 5. Load balance comparison
of CephFS, BeeGFS, IndexFS, and
Duplex within a 16-node cluster

Fig. 6. Scale of the 3 traces and the
generated permission trees

SQL databases and web services in CentOS, data backup

in Fedora, and desktop applications in Windows. Each trace

contains around 100,000 directories and 0.37-1 million files

with depths of 6-9.

Comparison Schemes: There are three comparison

schemes. The first scheme is IndexFS, which is still under test-

ing with 16 nodes. IndexFS uses a component-based lookup

method to check permissions on the path sequentially, and this

scheme is denoted by Index. The second scheme is the slow

path of Duplex, which is denoted by D-Slow. The third scheme

is the fast path of Duplex and is denoted by D-Fast.
1) Permission Merging Algorithm.
We loaded the three traces into Duplex and generated

permission trees on the PMS. To demonstrate the compression

ratio of the permission merging algorithm, we compared the

size of the permission tree on the PMS with that of the original

directory tree. The results are presented in Figure 6, where we

indicate the number of files (# File) and directories (# Dir) of

each trace and record the total number of nodes in the merged

permission tree (# PNode). Since the numbers vary widely, we

measured the y-axis on a log scale.

From Figure 6, we can see that the PNode scale is signifi-

cantly smaller than the size of the original directory tree. For

example, in the CentOS trace, the number of PNodes is 3,276,

while the number of directories is roughly 123 thousand, and

the number of files is about 1 million. The number of PNodes

accounts for only 2.6% of the number of directories and 0.3%

of the number of files. These results confirm the efficiency

of the permission merging algorithm. In theory, a PMS can

support hundreds of MDSs.

1497.5

3328.5

640

1364

229.5

381

1086

3183.5

518.5

1229

188.5

383

1061.5

2992

503

1102

196.5

428.5

Fig. 7. Latency comparison of IndexFS, the slow path of Duplex, and the fast
path of Duplex within a 16-node cluster after loading static file system traces.
(a-c) CDF of stat latency. (d-f) Stat latency for different file depths.
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2) Latency Comparison.
To demonstrate the superiority of Duplex, we evaluate the

latency of stat operations with complete permission verifi-

cation. We follow the steps outlined below for each data

trace: First, we load the data trace into the three metadata

service schemes. Then, the client randomly selects 50,000

files from the data trace and accesses their metadata using

the stat commands. We record the latency of each stat
operation to show the access overhead, including the time for

permission checks. We then sort the 50,000 stat records

and illustrate the cumulative distribution function (CDF) of

the latency results in Figures 7(a-c). These figures also show

the average latency and 99th percentile (P99) latency. Further-

more, we classify records by accessed depth and illustrate the

operational latency at different file depths in Figures 7(d-f).

The results shown in Figures 7(a-c) demonstrate that the fast

path of Duplex outperforms the other two comparison schemes

in terms of both average latency and P99 latency. For instance,

in the CentOS trace, the average latency of D-Fast is 229.5

us, which is 84% lower than IndexFS and 64.2% lower than

D-Slow. The P99 latency of D-Fast is 392 us, which is 88.2%

lower than Index and 71.3% lower than D-Slow.

Figures 7(d-f) illustrate the average access latency at differ-

ent file depths. We observe that the access latency of Index
and D-Slow increases linearly as the file depth increases. For

example, in the CentOS trace, as the file depths increase

from 1 to 20, the latency of Index increases from 212 us to

3000+ us, and the latency of D-Slow increases from 202 us to

1625 us. IndexFS uses the sequential component-based lookup

method, which involves too many remote communications

during permission checking, leading to poor performance. D-
Slow uses a parallel access method to reduce latency, resulting

in moderate performance. In contrast, D-Fast uses a dedicated

PMS to serve permission checking and locate files via full-path

indexing, leading to low and stable access latency.

V. CONCLUSIONS

Duplex is a scalable metadata service for distributed file

systems that aims at low and stable metadata access latency.

Through its novel designs, such as the single-node PMS and

full-path indexing based on DCH, Duplex has demonstrated

low latency and high scalability in evaluations. Duplex rep-

resents a promising approach to metadata management for

distributed file systems. Future work could build on its design

to further improve efficiency and performance.
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