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Abstract—Distributed file systems (DFS) are the cornerstone
of modern mass data processing systems. In DFS, the metadata
service, as the core component, often becomes a performance
bottleneck. Existing metadata service solutions have implemented
flattened metadata management and full-path indexing to achieve
high scalability in terms of capacity and throughput. How-
ever, these approaches have limitations, such as conflicts with
POSIX-style permission verification and flawed support for super
directories, leading to high and unstable latency that cannot
provide reliable service for latency-sensitive applications. To
overcome these limitations, we propose Duplex, a scalable DFS
metadata service based on full-path indexing, which aims for
low and stable latency. Duplex incorporates three key designs:
a fast access path featuring a centralized permission server for
efficient permission verification, a permission merging algorithm
to reduce the PMS’s space footprint, and flattened metadata
management based on double consistent hashing that enables low-
latency access to super directories. Our evaluations demonstrate
that, compared to state-of-the-art metadata solutions, Duplex
significantly reduces the average lookup latency by up to 84%
and the 99th percentile tail latency by up to 88.2% for metadata-
intensive benchmarks. Additionally, Duplex improves the lookup
IOPS by up to 7.6 x /2.3x compared to CephFS and BeeGFS.

Index Terms—Distributed file system, Metadata Service, La-
tency, Full-path Indexing

I. INTRODUCTION

Due to high throughput, high scalability and high avail-
ability, the large-scale distributed file system (DFS) has been
widely deployed in modern data centers to serve data-intensive
applications, e.g., big data analytics [4], high-performance
computing (HPC) [5], cloud computing [7], [11], Al training,
and web applications. These scenarios can be classified into
two categories, throughput-sensitive applications and latency-
sensitive applications. Throughput-sensitive applications, such
as checkpointing for HPC and batch access for Al training,
require storage backends with high I/O throughput and scal-
able capacity. Conversely, latency-sensitive applications, such
as financial storage and interactive VR/AR/MR, demand low
and stable operation latency to meet stringent service-level
objectives (SLOs).

In DFS, metadata access is on the critical data path and
accounts for more than half of all system accesses [3].
Consequently, the metadata service is always a performance
bottleneck [13], [4], which is particularly problematic for
large-scale DFS with petabyte-scale metadata volumes in
modern data centers [3]. To achieve high scalability in terms of
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capacity and throughput, current metadata solutions tend to use
full-path indexing based on flattened metadata management.
Flattened metadata management uses hash algorithms and key-
value databases to manage metadata in a unified flattened
namespace, building a flexible and scalable storage architec-
ture for metadata [9], [12]. The full-path indexing method
is based on flattened metadata management. It uses the full
path of files as indexes, shortening access path and increasing
throughput [20]. However, despite their success in achieving
scalable capacity and throughput, these techniques face two
challenges in meeting latency service-level objectives (SLOs)
for latency-sensitive applications:

e Conflict between permission checking and full-path in-
dexing. In POSIX-compatible file systems, each component
has its own permissions. Once a file is requested, the file
system checks permissions using a component-based method,
which splits the pathname into components (separated names
of directories and files) and traverses them sequentially in
the hierarchical directory tree [10]. However, in large-scale
DFS, the directory tree is distributed across multiple metadata
servers (MDS), requiring the metadata traversal to go through
multiple hops among MDSs, resulting in high latency for
remote access. The hierarchical permission mechanism negates
the performance gain from the full-path indexing method.
To shorten latency, state-of-the-art schemes use parallel path
resolution to access permissions of all components on the same
path in parallel [12], [13]. However, this approach maintains
many network connections with varying delays when access-
ing deep files, still suffering from long tail latency.

e Unpredictable latency in super directories. The flattened
metadata management prototypes treat each file as a separate
object and distribute them across multiple MDS, resulting
in high load balance but damaging spatial locality. Unfortu-
nately, spatial locality is crucial for file system performance,
particularly for range operations performed at the directory
level such as 1s and rmdir. To balance spatial locality and
load balance, current flattened metadata management schemes
distribute metadata at the directory level or directory subset
level, instead of in single-file granularity [16], [12], [15].
However, these approaches result in access hotspots and long
tail latency for super directories that contain a large number
of files.

To address the issues incurring high and unpredictable
access latency, this paper presents Duplex, an innovative
metadata service for large-scale DFS. Duplex aims to deliver
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low and stable manipulation latency for latency-sensitive appli-
cations while maintaining scalable throughput and capacity for
throughput-sensitive applications. The solution includes three
key designs to optimize the indexing mechanism and metadata
management. First, Duplex adopts a novel metadata service
architecture with a dual access path approach, featuring a fast
path with low latency and a slow path with high through-
put. Both paths support complete POSIX-style permission
verification. The fast path includes a dedicated permission
server (PMS) that caches all directory permissions from the

MDSs, enabling requests from latency-sensitive applications to

complete permission checks quickly. Second, Duplex proposes

a tree-based permission merging algorithm to improve the

space efficiency of the single-node PMS, preventing the PMS

from being the system capacity bottleneck. Third, Duplex uses

a novel flattened metadata management scheme that distributes

directory subsets among the MDS clusters by double consis-

tent hashing (DCH), providing low and stable access latency
even for deep files and super directories.
In summary, this paper makes the following contributions:

o Identification of the limitations present in state-of-the-art
metadata service schemes when aiming to achieve stringent
latency SLOs (§1D).

o Introduction of a novel metadata service solution, named
Duplex, featuring an innovative architecture comprising a
fast path and a slow path catering to latency-sensitive and
throughput-sensitive applications, respectively (§III-A). On
the fast path, Duplex incorporates a dedicated yet non-
scalable PMS equipped with a permission merging algo-
rithm to facilitate rapid permission checks (§III-B). On the
slow path, the MDS cluster adopts a novel flattened metadata
management scheme that leverages parallel path resolution
to achieve scalable throughput (§11I-C).

o Implementation of Duplex in a distributed cluster based on
the IndexFS source [16] and comprehensive performance
evaluations comparing it with state-of-the-art metadata ser-
vice designs (§IV).

II. BACKGROUND AND MOTIVATION

Large-scale distributed file systems (DFS) are designed to
efficiently store and manage vast volumes of data across
numerous networked nodes [14], [19]. These nodes collaborate
to provide a unified file system view for multiple clients. In
the context of DFS, metadata refers to essential information
that describes the structure and location of files and directories
within the system, encompassing details like names, attributes,
ownership, and physical location. Extensive research has
demonstrated that metadata operations are highly prevalent
within DFS, with statistics showing that 50% to 80% of all
file system accesses involve metadata-related actions [1], [3].
Consequently, the efficient provision and management of high-
quality metadata services are of paramount importance for
optimizing the overall performance of DFS.

A. Traditional hierarchical metadata service

Traditional file systems organize metadata using a hier-
archical tree-based structure. The directory tree comprises
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directories that serve as containers for both files and sub-
directories. In this structure, branch nodes are directories,
while leaf nodes represent files. GoogleFS [4], for instance,
manages the entire directory tree within a dedicated MDS.
However, this centralized approach can lead to performance
bottlenecks and scalability challenges. To enhance scalability,
some DFSs distribute the metadata service across multiple
servers at the subtree level [13], [19]. The directory tree is
divided into multiple subtrees, with each subtree assigned
to a distinct server for management. However, this method
results in imbalanced workloads among MDSs, particularly
when workloads dynamically change [17].

Hierarchical metadata services rely on the component-based
lookup method. When a client needs to access file metadata,
it divides the file path into multiple components (separated
by ”/”) and sequentially traverses the directory tree layer
by layer, starting from the root directory and progressing
toward the target file [10]. While this approach is effective
in local file systems, it poses challenges in DFS. Traversing
a path involves multiple MDSs and incurs substantial remote
overhead, contributing to increased file access times [16], [9].
Moreover, the component-based lookup method can lead to
access hotspots in DFSs due to the need to access the root
directory for every operation.

To address the limitations associated with hierarchical
metadata management and component-based lookup method,
flattened metadata management and full-path indexing method
have been proposed.

B. Flattened metadata management

In contrast to tree-based distribution, a flattened metadata
service distributes metadata across different MDSs using ran-
dom algorithms like hashing. Typically, each metadata server
manages its local metadata in a single table or database.
Flattened metadata management offers increased flexibility
and efficiency in metadata operations, particularly in large-
scale systems. File system operations, including file lookup,
creation, and deletion, can be performed more efficiently due
to easier access and modification of metadata. Furthermore,
this approach simplifies metadata distribution across multiple
servers, resulting in enhanced scalability and fault tolerance.

LocoFS [9] represents a typical flattened metadata service
for DFS, which transforms directory tree metadata into sepa-
rate objects stored in key-value databases. This transformation
leads to reduced latency and increased throughput. However,
LocoFS distributes metadata at the file granularity, sacrificing
the spacial locality of directories. Range operations at the
directory level, such as 1s and rmdir, rely on a single-
node directory metadata server, limiting scalability. InfiniFS
[12] improving range operation performance by distributing
metadata at the directory granularity, ensuring that files within
the same directory are on the same MDS. However, this
approach does not adequately consider the challenges posed by
super directories. In large-scale file systems, super directories,
which contain millions of files, can create significant activity
hotspots when assigned to a single MDS. To mitigate this, Patil
et al. introduced GIGA+ [15], a system that partitions super
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directories into subsets and distributes them across different
MDSs. IndexFS [16] adopted this approach to achieve high
scalability and balanced workloads. However, GIGA+’s client
often communicates with multiple MDSs to obtain the desired
mapping for locating files within a super directory, resulting in
increased latency. Hence, current flattened metadata manage-
ment schemes struggle to meet stringent latency SLOs when
accessing super directories.

C. Full-path indexing method

The full-path indexing method, facilitated by flattened
metadata management, stands in contrast to the traditional
component-based lookup method, which relies on parent-child
relationships between directories. In the full-path indexing
method, all files and directories reside within the same flat-
tened namespace, allowing for rapid lookup and retrieval of
files based on their complete path [20], [8]. While the full-path
indexing method holds promise in reducing lookup latency,
it encounters challenges in file systems due to conflicts with
the POSIX-style permission mechanism. In systems adhering
to POSIX standards, permissions are managed through a
component-based method, where each directory or file pos-
sesses its individual permissions. The file system determines
the final permission for a file by traversing the components
along the file path and sequentially checking their permissions.
Given the critical role of permission checks in maintaining se-
curity, the permission query still necessitates traversal through
hierarchical components, negating the performance advantages
offered by the full-path indexing method. Consequently, rec-
onciling conflicts between full-path indexing and POSIX-style
permissions presents a formidable challenge [2], [18].

Several research efforts have been dedicated to addressing
this challenge. One approach involves storing the complete
set of permissions with each file. For example, CalvinFS [18]
associates all ancestor directory permissions with each file to
support hierarchical access control in the POSIX standard.
While this approach eliminates the need to traverse the entire
directory tree to check distributed permissions, it introduces
significant storage overhead due to redundant permission
metadata in large-scale DFS deployments. Besides, modifying
directory permissions, particularly for directories closer to the
root, entails recursively propagating the new permissions to
all descendants of the modified directory. Another solution
is parallel path resolution, as employed by InfiniFS [12] and
HopsFS [13]. These systems use parallel path resolution to
access the permissions of components along the file path
simultaneously. Consequently, a file access operation can be
completed within a single round-trip time (RTT). However,
when accessing deeply nested files, the client likely maintains
hundreds of remote connections for one request, incurring
huge overhead on CPU and network. Furthermore, network
conditions in practice may not be consistent across different
nodes, and the latency of parallel path resolution depends on
the longest RTT. Regrettably, these full-path indexing methods
are unable to guarantee strict latency SLOs.
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Fig. 1. Architecture of Duplex

III. DESIGN

This paper introduces Duplex, a scalable filesystem meta-
data service with full-path indexing, featuring three key design
elements. To address the conflicts between full-path indexing
and POSIX-style permission mechanisms, Duplex employs a
novel architecture that offers a fast access path for latency-
sensitive applications and a slower path for throughput-
sensitive applications. The fast path integrates a dedicated
Permission Server (PMS) that caches directory permissions
to expedite permission queries (§1I1-A). Additionally, Duplex
incorporates a tree-based permission merging algorithm for
the PMS to reduce its space footprint (§III-B). Lastly, it
utilizes a scalable flattened metadata management system that
prioritizes both balance and locality, ensuring rapid access to
super directories ($III-C).

A. Architecture

Figure 1 illustrates the architecture of Duplex, consisting of
three primary components:

Metadata Servers (MDSs) play a pivotal role in Duplex,
responsible for distributed metadata services. The directory
tree is managed across MDSs through a flattened directory-
subset-grained distribution scheme. To optimize performance,
metadata resides in the memory of MDSs, with metadata
updates recorded as logs persisting in local levelDB storage
for reliability.

Permission Server (PMS): Duplex decouples directory data
into contents (timestamp, size, and child list) and permissions
(user, group, and mode). During initialization, directory per-
missions are copied from the MDS cluster to a dedicated
permission server (PMS). Hierarchical directory permissions
are centrally managed by the PMS to facilitate permission
checks. By providing the full path of a designated file, the
PMS verifies the permissions of the file’s ancestor directories
and returns the result. Duplex employs a write-through mode to
maintain consistency between the MDS cluster and the PMS.
Any update to directory permissions is first applied to the MDS
cluster and then synchronized with the PMS, ensuring crash
consistency. In case of the PMS crash and restart, hierarchical
permissions can be reconstructed from the MDS cluster.

Client: Clients of Duplex execute file system operations
through the userspace client library /ibduplex. Clients support
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two access methods: a fast path, which offers low latency but

limited scalability, and a relatively slower but more scalable

path.

o Fast path. In the fast path, the PMS handles permission
checks, and the target file is retrieved from the MDS cluster
based on the full path. Figure 1 illustrates an example where
a client accesses /B/C/ f1 using the fast path. Initially, the
PMS verifies the permissions of the path /B/C (@), while
the MDS cluster verifies f1’s permissions (®). Only after
passing both checks can the client access the desired file
metadata from the MDS cluster. The two permission checks
can be processed in parallel, further reducing the access
delay.

o Slow path. The slow path in Duplex caters to throughput-
sensitive applications that can tolerate higher latency. This
path allows clients to bypass the PMS and access the
MDS cluster directly through parallel path resolution. For
instance, when accessing /B/C/ f1, clients on the slow path
access multiple components in parallel, including / (®), /B
(@), /B/C (®), and /B/C/ f1 (®). Only after successfully
passing all permission checks can the client retrieve the
metadata of /B/C/ f1 from the MDS cluster.

B. Tree-based permission management

The design of the PMS effectively mitigates permission
overhead. However, the single-node PMS storing permission
metadata for the entire system has scalability limitations. To
address this challenge, Duplex employs two methods to en-
hance the space efficiency of the PMS and enable it to support
large-scale DFS deployments: storing only directory permis-
sions (§III-B1) and merging identical permissions (§III-B2).
As the organization of permissions changes, the processing
flow of permission operations also adapts (§I1I-B3).

1) Storing directory permissions only

The PMS exclusively manages directory permissions since
clients can retrieve file metadata, including file permissions,
from MDSs using full-path indexing. Given that directory
metadata accounts for less than % of the entire file system
metadata [3], and permissions represent only a fraction of
directory metadata, directory permissions constitute a mere 2%
of the total metadata volume in Duplex.

Figure 2(b) illustrates how the PMS extracts directory
permissions from the directory tree. The directory tree depicted
in Figure 2(a) comprises 9 directories with four types of
permissions and 5 files. The PMS eliminates unnecessary
metadata, such as file metadata and directory contents, retain-
ing only directory permissions, as shown in Figure 2(b). This
representation is referred to as the permission tree in this paper.

2) Merging identical permissions.

Duplex introduces a permission merging algorithm to further
reduce storage requirements. In file systems, subdirectories
typically inherit the same permissions as their parent directory.
This characteristic is leveraged to eliminate redundant permis-
sions from the permission tree. The process from Figure 2(b)
to Figure 2(c) illustrates the consolidation of a permission tree.
Initially, entries with permissions identical to their parent are
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Fig. 2. (a) The original directory tree; (b) The initial permission tree generated
from (a); (c) The merged permission tree from (b); (d) A lookup and a
recursive update to (c); (e) A non-recursive update to (c).

pruned from the tree, resulting in the retention of 4 directories:
/., /A/E, /C, and /C/F/H. Subsequently, path prefixes that
match parent paths are omitted. The node indexes transform
into /, A/E, C, and F/H. The resulting permission tree adopts
the form of a radix tree (or compact prefix tree), which is an
efficient data structure for storing and retrieving strings [6].

3) Processing permission operations.

This section illustrates how the permission tree handles per-
mission operations, emphasizing that these operations pertain
exclusively to directories since the PMS manages directory
permissions exclusively.

A. Lookup. Permission lookup stands as one of the funda-
mental and critical functions, as it should be performed before
any metadata request to ensure safety. The PMS conducts
lookups using a top-down prefix matching process, resembling
a radix tree. If a node ID matches the prefix components of
the requested pathname, the PMS enters the node to perform
further prefix matching. The lookup process concludes when
no node matches the remaining pathname. Figure 2(d) provides
an example of querying the permission for directory /C/G.
The PMS successively accesses nodes / and C. However,
none of the children of C matches the remaining path G.
Consequently, the PMS determines that G shares the same
permission with C, and thus, it checks the permissions of /
and C.

B. Insert. Analogous to the lookup operation, the PMS pro-
cesses insert operations through a top-down prefix matching
process. When the search reaches the nodes that match the last
components of the inserted pathname, three possible scenarios
arise. First, if the node matches the inserted pathname exactly,
an error is raised because the directory to be added already
exists. Second, if the permissions of the current node are
identical to the inserted permissions, no updates are made,
as the new permission duplicates that of its parent. Third,
if the permissions differ, a new node is created as a child
of the current node. The new node’s ID corresponds to the
remaining directory pathname, and its value represents the new
permission. For example, if a client inserts directory /A/E/I
with distinct permissions from /A/E in Figure 2(c), a new
node I will be generated as the child of /A/E.

C. Remove. Removing a directory necessitates the recursive
removal of its children. For instance, the removal of directory
/C in Figure 2(c) involves removing nodes /C and F/H.
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Similarly, the removal of directory /C/F in Figure 2 entails
removing node F/H.

D. Update. Permission updates can be either recursive or
non-recursive. Recursive updates entail modifying the permis-
sions of all files and subdirectories beneath the given directory
to the same value. To accomplish this, the PMS consolidates
the involved directories into a single node. Therefore, a
recursive update operation is essentially a combination of
a Remove operation followed by an Insert operation. For
instance, operation @ in Figure 2(d) recursively alters the
permissions of directory /C by initially removing it and
subsequently inserting it with the new permissions.

In contrast, non-recursive updates are more intricate, par-
ticularly when the updated directory has previously been
merged into the ancestor but must now be re-added as an
individual node. Figure 2(e) illustrates a non-recursive update
to directory /A in Figure 2(c). Firstly, the PMS creates a
new node if no node matches the directory’s pathname. In
the absence of a match, a node A is established as the child
of node / (®). Secondly, the PMS retrieves the permissions
of the subdirectories of the designated directory from the
MDS cluster and inserts them into the permission tree. As
a result, nodes D and E are added as children of node A
(®@). Lastly, the PMS adjusts the permission tree using the
permission merging algorithm, which includes removing nodes
with identical permissions as their parents and reorganizing the
neighboring nodes of the manipulated node. In Figure 2(e),
node A/E is removed since it is redundant to E (®). The final
permission tree is presented at the bottom of Figure 2(e).

The merged permission tree enhances storage efficiency
and ensures the accuracy of permission operations. Moreover,
the permission merging algorithm reduces the depth of the
tree, resulting in fewer hierarchical searches and improved
permission performance.

C. Flattened metadata management

Duplex employs a novel flattened metadata management
approach to efficiently handle large-scale DFS metadata within
the MDS cluster. The distribution of the directory tree is
accomplished through three steps. Firstly, the directory tree is
partitioned into directories. Secondly, each directory is divided
into subsets, and file metadata is dispersed across the subsets
using consistent hashing (CH) (§III-C1). Finally, the subsets
are mapped to MDSs based on a second CH calculation
(§II-C2). Similarly, clients utilize double CH calculations to
index files from the MDS cluster, which is termed as DCH in
this paper (§III-C3).

1) Partitioning directories into subsets.

Some metadata services partition the directory tree at the
directory level, leading to activity hotspots in super directories
[12], [5]. To address this issue, Duplex divides directories into
finer-grained units called directory subsets.

Each directory is organized into one or more subsets. Figure
3(a) illustrates an example of partitioning a directory tree with
6 directories and 5 files into 7 subsets. Directory A is divided
into two subsets, while each of the other directories is managed
as a single subset. Determining the number of subsets for a
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Fig. 3. (a) Partitioning a directory tree into 7 subsets (Smaz = 3); (b)

Distributing 7 subsets among three MDSs; (c) Accessing files from (b) through
DCH.

directory involves considering two key parameters: directory
size and maximum subset size. Directory size refers to the total
number of files, including sub-directories, within a directory,
denoted as DirSize. For instance, in Figure 3(a), directory A
contains 3 files: f, C, and D, resulting in a DirSize of 3. The
maximum subset size, denoted as Sy,q., represents an upper
limit on the number of files a subset can contain. The number
of subsets required to partition a directory is calculated as
n = |DirSize/Smaz] + 1. In the example of Figure 3(a),
with Sy,q. set to 3, directory A is divided into two subsets
because its DirSize is 3, reaching the limit. Other directories
with DirSize less than 3 are each managed as a single subset.
A subset comprises three components:

e [D. Each subset is identified by an ID consisting of
two parts: the pathname of the corresponding directory to
distinguish subsets from different directories and a unique
number that increments from O to distinguish subsets within
the same directory. In Figure 3(a), the two subsets of A are
identified as Ag and A;, respectively.

e Size. The directory size is centrally stored in the master
subset (mSubset), which is the first subset (subset 0) of the
directory. Each directory has exactly one mSubset. In Figure
3(a), the size of directory A is stored in subset Ay.

e Files. When a directory is divided into multiple subsets,
files within the directory are evenly distributed across the
subsets based on the CH results of their file names. As
shown in Figure 3(a), directory A has two subsets that contain
metadata for its children. For example, D is located in subset
Ag because CH(D, 2)=0, while f; and C are in subset A;
because their CH values are 1. The use of CH ensures minimal
metadata migration when adjusting subsets due to changes in
directory size.

2) Distributing subsets among MDSs.

After dividing directories into subsets, Duplex distributes
these subsets among MDSs using a second CH algorithm. By
providing subset IDs as input, the subsets are assigned to the
respective MDSs. This secondary CH ensures load balance
and minimizes subset migration when adjustments are made
to MDS assignments. Figure 3(b) provides an example of
distributing seven subsets among three MDSs.

3) DCH for file indexing.

The mSubset functions as the fixed access entry point for
its corresponding directory. Figure 3(c) illustrates how files,
such as A/D/F/ f4 and A/ f1, are indexed in the MDS cluster.
Let’s first consider the example of A/D/F/fy. The client
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initiates access to the mSubset by default. The subset ID is
determined by combining the directory path with the subset
ID 0, resulting in A/D/Fj. The client then employs a CH
algorithm to calculate the target MDS ID, which yields 0
(®). Subsequently, the client accesses MDS 0 (@). Since
A/D/F contains only one subset, the requested file, 2/D/ Fyp,
is successfully retrieved (), completing the lookup process.

Next, let’s consider the example of stat A/ f;. The first
two steps remain the same, where the client communicates
with the mSubset Ay on MDS 1 for the file A/ f; (® and
®@). However, as the file is not in the subset, MDS 1 returns
the number of subsets instead of the desired file metadata.
Since Sy = 3 and the size of directory A is 3, which
is recorded in subset Ay, MDS calculates that directory A
contains two subsets and returns n = 2 to the client (®). At
this point, the client employs the DCH method, which involves
two CH calculations to locate files. The first calculation (C' H)
determines the subset ID based on the file name, revealing that
file A/ f1 is in subset 1. The second calculation is for the MDS
ID based on the subset ID. The client inputs A; into C'Hs and
determines that the target MDS ID is 2 (®). Finally, the client
retrieves file 2/ f; from MDS 2 (® and ®).

The DCH approach ensures that clients can access a file
within two RTTs, regardless of the file depth and directory
size.

IV. EVALUATION

In this section, we evaluate the performance of Duplex.
The evaluation is divided into two parts based on different
evaluation methods. In the first part, we use MDTest as
a benchmark to measure metadata operation performance,
including throughput, latency, and load balance (§IV-B). In
the second part, we compare different permission mechanisms
using static file system metadata collected from private pro-
duction servers (§IV-C).

A. Experimental Setting

Duplex is based on the IndexFS source code and im-
plemented in C++, comprising approximately 4k lines of
modified code. IndexFS is a distributed metadata service for
large-scale file systems, which uses GIGA+ [15] (a hash-based
management) to partition the directory tree and a component-
based lookup method to index files. We have entirely altered
metadata distribution and indexing methods while reusing
the LevelDB-based journal mechanism from IndexFS. All
experiments are performed on identical commercial machines,
each equipped with 24 processors and 32 GB of memory.
As shown in Table I, the nodes run CentOS 7.6 and are
connected by 40-GB InfiniBand networks with a round-trip
time of approximately 120 us. For optimal performance, we
employ ram-disks as the storage devices.

B. MdTest Benchmark

Comparison Schemes: In this section, we compare the
performance of four metadata services. The first scheme is
a 16-node CephFS, consisting of 16 OSDs and 16 MDSs.
All MDSs are active, resulting in a distributed directory tree
across the 16 nodes. The second metadata service scheme

288

TABLE 1
ENVIRONMENT CONFIGURATION

Processor  Intel Xeon CPU E5-2620 0 @ 2.10GHz * 24
Memory 32 GB

Storage RambDisk

oS CentOS Linux release 7.6.1810

Kernel 3.10.0-957.e17.x86_64

Compiler  GCC 4.8.5 20150623

Network ConnectX Dual Port 40Gb/s InfiniBand
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Fig. 4. Comparison of throughput (a) and latency (b) for CephFS, BeeGFS,
IndexFS, and Duplex (D-Slow and D-Fast) within a 16-node cluster for six
types of operations.

is BeeGFS [5] version 7.0, one of the leading parallel file
systems. BeeGFS consists of 1 manager process, 16 MDS
processes, and 16 storage processes on 16 physical nodes.
The third scheme is IndexFS [16], comprising 16 physical
nodes, each running an MDS process. All three schemes use
the component-based lookup method. The fourth scheme is our
Duplex with 16 MDSs and 1 PMS. The MDSs are deployed on
16 physical nodes, and the PMS is on MDS 0. Duplex is tested
both within the slow path (D-Slow) and fast path (D-Fast).

Benchmark: We use the MDTest benchmark tool, which
generates a highly concurrent stream of metadata operations on
a file system. We initialize MDTest client processes in parallel
across 16 nodes via MPI. Each MDTest process generates
100K requests across 512 directories with a depth of 9 in the
directory tree. We test six types of operations, including mkdir,
stat_dir, rmdir, creat, stat_file, and unlink. The first three are
directory operations, and the rest are for files. Since IndexFS’s
open-source code has not implemented rmdir and unlink, we
exclude these two operations from the IndexFS evaluation.
Besides, the difference between D-Fast and D-Slow is the
permission checking method, and they share the same process
of mkdir and rmdir. Hence, we exclude these two operations
from D-Fast evaluation. We compare the performance in terms
of throughput, load balance, and latency.

1) Throughput.

We conduct throughput tests by scaling the number of
MDTest processes from 1 to 64 per node to measure the max-
imum throughput provided by each scheme, with a maximum
of 16 x 64 = 1024 MDTest clients. The throughput results are
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displayed in Figure 4(a), with the x-axis denoting the six types
of operations, and the y-axis representing the corresponding
throughput of different schemes, where KOPS stands for 1000
operations per second.

We can make three observations from the figure:a) Duplex
significantly outperforms other schemes in terms of throughput
for file operations. The throughput of D-Slow is about 350
KOPS, which is 2.3 x —4.1x higher than that of BeeGFS.
The throughput performance benefits from the highly scalable
flattened metadata management. Duplex’s clients can directly
access target MDSs without cross-server coordination. b) For
mkdir and rmdir, the throughput of Duplex is only about 50
KOPS. This is because mkdir and rmdir update directory
permissions, requiring synchronization with the single-node
PMS, which becomes a throughput bottleneck for these oper-
ations. Although the throughput is relatively low, it is still over
2.3x higher than that of CephFS and BeeGFS. c) The lookup
throughput of D-Fast is also limited by PMS’s performance.
However, its throughput is higher than that of mkdir and
rmdir, since lookups occur with less concurrency overhead
to the PMS than updates.

2) Latency.

In this section, we present a comparison of the latency of
the four metadata service solutions. The experimental setup is
the same as in the previous section, except that we run only
one MDTest client process on each node to avoid congestion.
Figure 4(b) shows the average latency of the four schemes. The
x-axis denotes the six types of operations, and the y-axis is
the corresponding latency. The results show that Duplex with
the fast path consistently has the lowest average latencies for
all six operations when compared to the other schemes. In
particular, the stat latency of D-Fast is only 200 us, leading
to a reduction of up to 74.1% compared to CephFS and 41.9%
compared to BeeGFS.

3) Load Balancing.

In this section, we compare the load balancing capability
of the 4 schemes. We collect the number of inodes on each
of the 16 MDSs during the last experiment as MDSs’ loads.
Then, we normalize the loads to the average value. The load
distribution is shown in Figure 5, where the x-axis represents
the ID of the 16 MDSs, denoted by 1 to f in hexadecimal.
The y-axis shows the normalized loads on each MDS, where
their average value is 1. From the figure, we observe that the
loads of CephFS and BeeGFS are heavily skewed, as they
use tree-based partitioning with coarse partition granularity.
Differently, IndexFS and Duplex achieve almost full load
balance because they use hash-based partitioning.

C. Static file system traces

Benchmark: To evaluate our new permission mechanism,
we collected three static file system traces from our private
production servers. Each trace was collected by traversing
the directory tree from the root directory and accessing all
directories and files in the operating system. The trace in-
cludes the names and metadata of the directories and files
but excludes the file content as it does not affect the test
results. We collected three traces under different workloads:
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SQL databases and web services in CentOS, data backup
in Fedora, and desktop applications in Windows. Each trace
contains around 100,000 directories and 0.37-1 million files
with depths of 6-9.

Comparison Schemes: There are three comparison
schemes. The first scheme is IndexFS, which is still under test-
ing with 16 nodes. IndexFS uses a component-based lookup
method to check permissions on the path sequentially, and this
scheme is denoted by Index. The second scheme is the slow
path of Duplex, which is denoted by D-Slow. The third scheme
is the fast path of Duplex and is denoted by D-Fast.

1) Permission Merging Algorithm.

We loaded the three traces into Duplex and generated
permission trees on the PMS. To demonstrate the compression
ratio of the permission merging algorithm, we compared the
size of the permission tree on the PMS with that of the original
directory tree. The results are presented in Figure 6, where we
indicate the number of files (# File) and directories (# Dir) of
each trace and record the total number of nodes in the merged
permission tree (# PNode). Since the numbers vary widely, we
measured the y-axis on a log scale.

From Figure 6, we can see that the PNode scale is signifi-
cantly smaller than the size of the original directory tree. For
example, in the CentOS trace, the number of PNodes is 3,276,
while the number of directories is roughly 123 thousand, and
the number of files is about 1 million. The number of PNodes
accounts for only 2.6% of the number of directories and 0.3%
of the number of files. These results confirm the efficiency
of the permission merging algorithm. In theory, a PMS can
support hundreds of MDSs.
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2) Latency Comparison.

To demonstrate the superiority of Duplex, we evaluate the
latency of stat operations with complete permission verifi-
cation. We follow the steps outlined below for each data
trace: First, we load the data trace into the three metadata
service schemes. Then, the client randomly selects 50,000
files from the data trace and accesses their metadata using
the stat commands. We record the latency of each stat
operation to show the access overhead, including the time for
permission checks. We then sort the 50,000 stat records
and illustrate the cumulative distribution function (CDF) of
the latency results in Figures 7(a-c). These figures also show
the average latency and 99th percentile (P99) latency. Further-
more, we classify records by accessed depth and illustrate the
operational latency at different file depths in Figures 7(d-f).

The results shown in Figures 7(a-c) demonstrate that the fast
path of Duplex outperforms the other two comparison schemes
in terms of both average latency and P99 latency. For instance,
in the CentOS trace, the average latency of D-Fast is 229.5
us, which is 84% lower than IndexFS and 64.2% lower than
D-Slow. The P99 latency of D-Fast is 392 us, which is 88.2%
lower than Index and 71.3% lower than D-Slow.

Figures 7(d-f) illustrate the average access latency at differ-
ent file depths. We observe that the access latency of Index
and D-Slow increases linearly as the file depth increases. For
example, in the CentOS trace, as the file depths increase
from 1 to 20, the latency of Index increases from 212 us to
3000+ us, and the latency of D-Slow increases from 202 us to
1625 us. IndexFS uses the sequential component-based lookup
method, which involves too many remote communications
during permission checking, leading to poor performance. D-
Slow uses a parallel access method to reduce latency, resulting
in moderate performance. In contrast, D-Fast uses a dedicated
PMS to serve permission checking and locate files via full-path
indexing, leading to low and stable access latency.

V. CONCLUSIONS

Duplex is a scalable metadata service for distributed file
systems that aims at low and stable metadata access latency.
Through its novel designs, such as the single-node PMS and
full-path indexing based on DCH, Duplex has demonstrated
low latency and high scalability in evaluations. Duplex rep-
resents a promising approach to metadata management for
distributed file systems. Future work could build on its design
to further improve efficiency and performance.
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