
ALT-index: A Hybrid Learned Index for Concurrent
Memory Database Systems

Yuxin Yang1, Fang Wang1,3*, Mengya Lei2, Peng Zhang1 and Dan Feng1

1 Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information Storage System,
Engineering Research Center of data storage systems and Technology, Ministry of Education of China,

School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China
2Hubei University of Technology, Wuhan, China

3Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
{yuxinyang, wangfang, zhangpeng19, dfeng}@hust.edu.cn, lmy up@hbut.edu.cn

Abstract—The learned index technique has been widely ex-
plored as a strong competitor to traditional indexes. It adopts
static learning-based models to fit the distribution of sorted data
and locate keys through predictions, which shows outstanding
query speed. However, frequent retraining is required when it
comes to concurrent insertion scenarios. Despite existing studies
introducing sparse slots and delta buffers to mitigate this effect,
the read-write performance of the learned index still falls short
of expectations, especially in concurrent conditions.

In this paper, we first propose a novel hybrid index scheme that
combines a read-efficient learned index with an insert-efficient
Adaptive Radix Tree (ART) to realize high performance for
read-write scenarios. However, it is not trivial due to expen-
sive model prediction errors, complicated model hierarchy, and
redundant node traversals. Therefore, we then introduce ALT-
index, an efficient hybrid learned index with high concurrency
for memory database systems. ALT-index highlights a delicate
two-tier architecture where linear data are stored in the learned
index without prediction errors and conflict data are hosted in
the lower layer as an optimized ART. Besides, we develop a
Greedy Pessimistic Linear (GPL) algorithm to support flattened
data structures for concurrency. In the optimized ART layer,
we introduce a fast and compact pointer buffer to further
improve the overall performance. Experimental results conducted
on various real-world datasets with 32 threads illustrate that
ALT-index improves performance by up to 1.9x, 2.1x, and 2.3x
compared with ALEX+, FINEdex, and XIndex in read-write-
balanced scenarios, respectively.

Index Terms—Memory database, Index structure, Learned
index

I. INTRODUCTION

Index structures are the fundamental components that sup-
port fast data access for memory databases. Recently, there
has been a surge of interest in Learned Index [1], which aims
to supplant traditional indexes (such as B-tree) with machine
learning models to improve index efficiency. The core idea
of the learned index is using learning-based models to fit the
distribution of sorted data and locate keys through predictions,
which significantly minimizes query and space overhead. To
train a learned index, the dataset will be stored and partitioned
into several segments. These segments will be the input to train
multiple models that approximate the Cumulative Distribution

* Corresponding author

Function (CDF) curve of the dataset. Once a learned index
is trained, each model can predict the position of a given key
with O(1) complexity. Typically, the average read performance
of a learned index is 1.5x–3x faster than that of a B-tree [1].

However, when dealing with insertion and concurrent sce-
narios, the learned index has limited performance. To be
specific, the static learned models require a blocked retraining
process to handle insertions. The retraining process is expen-
sive especially when the insertions and read-retrain conflicts
increase in the concurrent conditions. Our experiments find
that existing learned indexes’ performance decrease 68.2%-
93.4% caused by insertions with 32 threads under read-write-
balanced workloads compared to read-only workloads.

Existing studies explore techniques such as using delta
buffers [2]–[4] and reserving sparse slots [5]–[7] to improve
insertion performance of the learned index. Nevertheless, delta
buffers require merging overflowed buffers with the learned
models through the working or background threads, which
becomes a significant bottleneck when the concurrency scales
out. Reserving sparse slots in a model is another way to
accommodate insertions. However, when there is no empty slot
available for insertions, existing studies cannot gain high read-
write performance resulting from read-write blocking [5] or
cache invalidation [6]. Until now, none of the existing designs
can fully solve the insertion issue of the learned index.

Different from the learned index, the Adaptive Radix Tree
(ART) [8], one of the traditional indexes, is renowned for its
outstanding insert performance [9]–[11]. ART is an optimized
trie tree structure that employs a dynamic node size to mini-
mize the tree height and gain efficient insertions. Nevertheless,
ART exhibits inferior performance under read-only workloads
compared with the learned index [2]–[6]. Therefore, an initial
two-tier idea arises: we can place ART under the learned index
to handle insertions, which prevents the loss of concurrent
read-write performance caused by insertions in the learned
index. In addition, the previous model located in the learned
index can accelerate queries of ART, and it is not straightfor-
ward to utilize the hybrid learned index effectively due to the
following challenges.

86

2025 IEEE 41st International Conference on Data Engineering (ICDE)

2375-026X/25/$31.00 ©2025 IEEE
DOI 10.1109/ICDE65448.2025.00014

20
25

 IE
EE

 4
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 D

at
a

En
gi

ne
er

in
g

(IC
DE

) |
 9

79
-8

-3
31

5-
36

03
-9

/2
5/

$3
1.

00
 ©

20
25

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
DE

65
44

8.
20

25
.0

00
14

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 12,2025 at 00:01:25 UTC from IEEE Xplore. Restrictions apply.

1) Expensive model prediction errors in concurrent scenar-
ios: For model prediction errors when searching or inserting
a key in the learned index, existing researchers suggest using
secondary binary search or exponential search to correct
them [12], [13]. When the number of threads is small, the
impact of the secondary search is acceptable. However, in
high-concurrency scenarios where inaccurate predictions occur
frequently, the secondary search will quickly saturate the
memory bandwidth, making the prediction error a significant
system bottleneck [14].

2) Complicated model hierarchy restricts model location
and concurrent access: Existing learned indexes use a tree-
based structure to manage models containing the keys layer
by layer. However, when the CDF curve of a dataset is hard
to fit, current segmentation algorithms in learned indexes will
create an excessive number of leaf models, which increases
the traversal levels and performance overhead to locate a key
from root to leaf. Moreover, the complicated model hierarchy
will severely block structural modification operations due to
lock contention in concurrent scenarios [15].

3) Redundant node traversals in ART exacerbates perfor-
mance: If a key is not found in the learned index layer, we
need to search for it from the root node of ART. However,
we find that keys requested from the same learned index leaf
model have the common prefix, suggesting they have multiple
common parent nodes in ART. Traversals for these common
nodes are redundant and costly.

To address the challenges above, we present ALT-index,
A hybrid learned index scheme that combines Learned index
with adaptive radix Tree. ALT-index enables the utilization
of the remarkable read performance of the learned index and
takes advantage of ART’s outstanding write performance. In
detail, this paper makes the following contributions:

• A novel hybrid learned index architecture. We intro-
duce a novel concurrent hybrid learned index architecture
of read-write efficiency that takes advantage of the read
performance of the learned index and the write perfor-
mance of ART. ALT-index keeps the linear data in the
learned index layer and evicts the data with prediction
errors to an optimized ART layer, which ensures accurate
predictions in the learned index layer and replaces the
secondary search with direct queries to the ART layer.

• An efficient segmentation algorithm supports flat-
tened data structure. We design a Greedy Pessimistic
Linear (GPL) algorithm to partition data efficiently for
a flattened data structure. This flattened structure can
reduce the overhead of model locating and improve
the concurrency of the learned index. Moreover, ALT-
index incorporates a retraining scheme for dynamic data
distribution.

• A fast and compact pointer buffer to eliminate re-
dundant traversals. We introduce a fast pointer buffer to
link each leaf model to an intermediate ART node, thus
eliminating redundant node traversals in ART. Further-
more, we also propose a pointer merging scheme, which

MODEL1.1

MODEL 2.1 MODEL 2.2

MODEL 3.1 MODEL 3.2 MODEL 3.3

KEY

PREDICTION

PREDICTION - ERROR BOUND PREDICTION + ERROR BOUND

STA
G

E
 1

STA
G

E
 2

STA
G

E
 3

Fig. 1. The structure of RMI

significantly improves the space efficiency of the pointer
buffer and the scalability of ALT-index.

• Implementation with vigorous experiments. We imple-
ment ALT-index in C++ and compare it against state-
of-the-art learned indexes, including ALEX+, LIPP+,
FINEdex, and XIndex. We use four real-world datasets
with varying threads from 1 to 32 under read-write
workloads. Experimental results show that ALT-index im-
proves up to 1.9x–2.3x compared with the other solutions.

In the remainder of this paper, we give background with
motivation (Section II) and present the design of ALT-index
(Section III). Afterward, we show the experiments and analysis
of ALT-index (Section IV). We briefly discuss the inspira-
tion and limitations of ALT-index (Section V). Finally, we
review related work (Section VI) and conclude the paper
(Section VII).

II. BACKGROUND AND MOTIVATION

A. Static Learned Index

In recent years, the learned index [1] has been proposed
to replace B-tree with machine learning models, which can
predict the position of a key to finish index queries. For a
sorted data array, modeling its CDF curve for indexing is
a logical approach. To shorten the model training process,
researchers use linear functions to approximate the CDF. A
linear function can be represented as prediction(key) =
a ∗ (key) + b, where a and b are the parameters stored in
the data structure. In other words, a linear function is similar
to the hash function in a hashmap [16], because both require
one single calculation to locate a key. Due to the uncer-
tainty of the model, the learned index may have prediction
errors at runtime. To restrict the prediction error and enable
accurate search, the learned index defines an error bound
metric that the correct position must fall in an error range
[predict− error bound, predict+ error bound] around the
prediction position. Thus, the learned index needs a binary
search or an exponential search within the error range to locate
the key when the prediction is inaccurate.

87

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 12,2025 at 00:01:25 UTC from IEEE Xplore. Restrictions apply.

However, a single linear model fails to approximate complex
CDF curves efficiently. To address this issue, Kraska et al. [1]
introduce Recursive Model Index (RMI). As shown in Fig. 1,
RMI builds a directed acyclic graph with multiple upper stages
of models. These upper stages can predict picking a sub-model
in the next layer. When it reaches the leaf model at the bottom,
the leaf model finishes the last mile search to find the key
position. A secondary search around the predicted position is
required once a wrong prediction occurs. Instead of searching
the entire data array, the leaf models only need to approximate
a small interval in a subset of the whole dataset, which reduces
the model error bound. Despite the previous works such as
RMI and RadixSpline [17] have greatly improved the read
performance of databases, the static learned index still has
the crucial drawback that it does not support any structure
modifications or insertions due to expensive model retraining.

B. Updatable Learned Index

Inspired by RMI, recent studies aim to build an updatable
learned index to replace the traditional indexes through sparse
slots and delta buffers. ALEX [5] and LIPP [6] preserve
sparse slots in their data nodes to handle insertions in place.
Inserted data will be put into the slots which are not occupied.
For insertions to an occupied slot, ALEX designs a data-
shifting scheme to keep the data sorted, which consumes
25.2% overhead of the entire insertion. When a data node’s
fullness reaches a predefined level, ALEX will make node
splits and reserve extra sparse slots in the new data nodes.
Additionally, ALEX employs a cost model to decide when
to do structural modification operations. LIPP pays much
more attention to prediction conflicts caused by insertions. It
mitigates the overhead of secondary queries by segregating
conflict data into separate child nodes. Furthermore, the Fastest
Minimum Conflict Degree (FMCD) algorithm is introduced to
enable rapid reconstruction and adjustment of subtrees, thereby
minimizing the overall height of LIPP. LIPP creates new child
nodes if the predicted position is occupied, which consumes
40.7% overhead of the entire insertion. Based on ALEX and
LIPP, ALEX+ and LIPP+ further adopt an optimistic scheme
[14] to implement concurrency.

Another way to address the insertion issue is using delta
buffers. Data inserted into the learned index will be put into
delta buffers. Delta buffers will be merged periodically with
the learned models. PGM-index [7] handles the new insertions
with the idea of LSM trees [18]. It builds multiple sub-
indexes to cover subsets of keys in the next layer. After that,
to guarantee the keys stay sorted, insertions are handled by
establishing new sub-indexes by merging smaller ones with the
new key. Besides, there are other solutions based on the idea of
delta buffers. The difference between other related work, e.g.
FINEdex [2] and XIndex [3], is the granularity of delta buffers.
XIndex uses a dynamic RMI model on the top, and data are
located in the bottom leaf node of RMI. XIndex allocates a
delta buffer for each leaf node and the retraining procedure
will be done by background threads. FINEdex has a smaller
granularity of delta buffers. It allocates a level bin structure

TABLE I
STATISTICS OF THE CONCURRENT UPDATABLE LEARNED INDEXES AND
ART ON TWO 200 MILLION ITEMS DATASETS, THE LIBIO [19] AND THE

OSM [20] DATASETS. THE THROUGHPUT AND THE LATENCY ARE
PRESENTED IN MILLION OPS/SEC AND µs

Index Dataset Throughput P99.9 latency Limitation

ALEX+ libio 50.69 3.51 data shiftingosm 18.18 43.76

LIPP+ libio 7.69 30.88 statistic infoosm 5.54 46.85

FINEdex libio 28.76 9.06 predict errorosm 24.64 7.21

XIndex libio 27.56 6.59 predict errorosm 24.19 3.59

ART libio 48.81 5.37 node traversalosm 37.20 9.59

as a delta buffer for each data slot, which can prevent write
conflicts within a node’s delta buffer.

To evaluate the effectiveness of the sparse slots and delta
buffers solutions, we conduct an experiment with two real-
world datasets under read-write-balanced workloads. The re-
sults are shown in Table I. Overall, none of the existing works
can simultaneously maintain high throughput and low tail
latency on various datasets. ALEX+ has a high tail latency on
the osm dataset because the insertion conflicts trigger data-
shifting scheme. LIPP+ gains terrible performance in concur-
rent scenarios where every node in the insert path needs to
update its statistic information, which will introduce cacheline
invalidation, especially on the root node [14]. XIndex uses
a masstree as delta buffers, and FINEdex introduces a level
bin data structure similar to B-tree. FINEdex and XIndex
have similar performance due to their delta buffer solutions.
Moreover, the data are intensively sorted in the leaf nodes of
XIndex and FINEdex with a given error bound. The average
prediction error in a linear model is still high [21], and it will
severely damage the lookup performance when the number of
threads increases.

C. Motivation

The above designs focus on generating an updatable con-
current learned index to replace the traditional indexes. Sadly,
neither the sparse slots nor the delta buffers can effectively
address the insertion and concurrency issues. On the other
hand, unlike the learned index, which is known for its good
performance under read-only workloads [14], ART is widely
used in memory database systems due to its excellent insert
performance [8]. Our tests show that the average read-write
performance of ART is faster than learned indexes in Table I.
This observation gives us a different way from previous
solutions to build an efficient index for memory databases. In
this work, we attempt to take advantage of the learned index’s
read performance and ART’s write performance through a
combination. Therefore, a new hybrid index idea that combines
the learned index with ART is proposed. To implement this
idea, we need to meet the following goals.

1) Efficient hybrid learned index construction: We need
to draw a blueprint on how to construct the learned index

88

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 12,2025 at 00:01:25 UTC from IEEE Xplore. Restrictions apply.

and ART. The insertions and prediction errors are two key
factors that restrict the concurrent read-write performance of
the learned index. Existing schemes indicate that insertions are
difficult for the learned models to handle, and prediction errors
will introduce a secondary search to correct them. Moreover,
prediction errors occur more frequently in concurrent condi-
tions than in single-thread conditions, and the secondary search
will quickly saturate the memory bandwidth [14]. Therefore,
we must design the architecture of a hybrid learned index that
can efficiently handle insertions and prevent prediction errors
in the learned index.

2) High concurrency: It is imperative to enhance the con-
currency of indexes to fully utilize the computing power
of multi-core processors. However, the concurrency of ex-
isting learned indexes is often limited by high read-write
conflicts and low cache hit rates. Such as ALEX+ [14],
which shows low throughput on the osm dataset, attributed
to thread collisions caused by frequent structure modifications
and retraining. LIPP+ [14] uses counters for each node to
get information about insertions. But these counters introduce
frequent updates, which cause cache invalidation, especially
on the root node. Therefore, we should ensure that our hybrid
learned index can mitigate thread collisions and minimize the
cache invalidation to obtain high concurrency.

3) High performance with low space consumption: An
efficient in-memory database index structure must have both
high performance and low space consumption. However, it is
difficult for existing works to achieve both requirements at
the same time. For example, LIPP allocates a great number
of sparse slots, which sacrifice space efficiency to keep high
performance. FINEdex [2] and XIndex [3] use multiple delta
buffers with different granularities to improve insertion perfor-
mance. However, when dealing with workloads with frequent
insertions, the number of pre-allocated delta buffers increases,
which consumes too much space for high performance. There-
fore, we should improve the performance of our design while
minimizing space consumption.

III. ALT-INDEX DESIGN

A. ALT-index Overview

In this section, we present ALT-index, a high-performance
hybrid learned index tightly integrated with ART. ALT-index is
an in-memory, updatable index that can take advantage of the
learned index and ART for outstanding performance and high
concurrency. Our design goals are: (1) ensuring competitive
lookup times; (2) supporting efficient insert operations; (3)
keeping scalability and high concurrency; and (4) minimizing
memory consumption.

First, we introduce our novel hybrid learned index architec-
ture. The overall structure of ALT-index is shown in Fig. 2.
We put the data that can be easily predicted with a linear
function model into the learned index layer, and peel out
the data points that incur prediction errors. These data points
and the newly inserted conflict data will be put into ART-
OPT layer at the bottom. Further, this approach ensures the
accuracy of predictions, thereby preventing prediction errors

Upper Model(B-tree node)

...
...

...

f-index f-index f-index f-index

ML

ML

ML

ML

ML

ML ML ML

Node1_ptr Node3_ptr Node8_ptr ...

data

null

ML match level

GPL Model GPL Model GPL Model GPL Model

Fast Pointer Buffer

Node1

Node2 Node3

Node4 Node5 Node6 Node7 Node8

A
R

T-O
PT L

ayer
L

earned Index L
ayer

Conflict data

Fig. 2. The hybrid data structure of ALT-index

in the learned index layer. Moreover, the secondary search
step in the learned index will be replaced with the query in
ART. Significantly, this two-layer hybrid index leverages the
superior read performance of the learned index and capitalizes
on ART’s read-write performance simultaneously.

Second, in the learned index layer (Section III-B), we
introduce a GPL algorithm to partition data efficiently. This
scheme swiftly divides the dataset into linear segments through
a suggested error bound and initializes model variables. The
learned index layer maintains GPL models sorted by first
keys at its bottom to enhance concurrency. As depicted in
Fig. 2, a sequential GPL model layer for linear data storage
is deployed in ALT-index. Thread collisions are minimized
through this flattened data architecture, while the upper model
of the learned index functions as a sorted array, facilitating
efficient binary search operations.

Third, in ART-OPT layer (Section III-C), we manage the
data that cannot be absorbed by GPL models, referring to
conflict data during bulk loading and runtime insertions. ALT-
index incorporates a novel shortcut mechanism: a fast pointer
buffer with a merging scheme that reduces latency during a
search miss in the learned index layer. This structure improves
search latency and effectively manages concurrency between
the learned index and ART with minimal space consumption.
As illustrated in Fig. 2, each GPL model holds a fast pointer
index that swiftly locates the corresponding entry in the buffer.

In the remainder of this section, we show our concurrency
control design (Section III-E) in different conditions. Also,
ALT-index supports a dynamic retraining process when neces-
sary. We design a simple retraining temporal buffer to expand
the GPL model (Section III-F). We implement ALT-index with
practical operations with low overheads (Section III-G).

B. Learned Index Layer

We propose a GPL algorithm to make partitions. It can split
a dataset into segments efficiently with O(n) complexity in the
learned index layer.

89

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 12,2025 at 00:01:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Model number and error bound factors on four datasets with 200M
keys under read-only workload

1) Problems in existing learned index works: A single lin-
ear model can result in significant prediction errors when ap-
proximating complex CDF curves. Consequently, researchers
have employed multiple models to improve the approximation.
Various existing split algorithms are available for the learned
index to make segments quickly and fit into models. However,
existing partition algorithms result in many models, severely
damaging the performance of learned indexes.

We test XIndex and FINEdex with 200 million keys on four
real-world datasets, setting the error bounds suggested in their
papers. The average model number reflects the lookup time
required for the model location. The outcomes are depicted
in Fig. 3(a), illustrating that although the Learning Probe
Algorithm (LPA) in FINEdex decreases the number of models
compared to the dynamic RMI algorithm in XIndex, the
number of models still maintains at the million level, while our
ALT-index controls the number of models to thousand level
shown in Fig. 6(a) to keep high performance. Besides, it is
possible to facilitate a bigger error bound to reduce the number
of models. Nevertheless, the increase in error bound adversely
affects throughput due to the larger range necessitating sec-
ondary searches. We evaluated the throughput of FINEdex
and XIndex under read-only workloads across various error
bounds. As shown in Fig. 3(b), indexes reach peak throughput
with error bounds around 32 and 64. However, they suffer a
severe decline as the error bound further expands. The results
indicate that current learned indexes cannot deal with the
number of models and prediction errors at the same time.
However, ALT-index decouples these issues using a two-tier
structure, which puts the prediction errors into ART layer. In
this condition, ALT-index only needs to handle the number of
models and preserve linear data as much as possible in the
learned index layer.

2) Greedy Pessimistic Linear Algorithm: We introduce the
GPL algorithm to create linear partitions efficiently throughout
a dataset scan. First, we manually set a predefined error bound,
which triggers the segmentation until the prediction error of
newly inserted data exceeds it. The prediction error of a
data point will influence the following data points’ error by
updating the upper/lower slopes. This scheme is pessimistic
because it assumes that once a prediction error happens, we
need to make partitions as quickly as we can. Moreover, each
linear function of a GPL model is assumed to go through the
first point of each segment. The GPL procedure is detailed in

Algorithm 1 Greedy Pessimistic Linear Algorithm
1: Init cur position← 0, N ← remaining keys
2: while cur position<N
3: Calculate new slope of the current and the first point
4: if new slope>upper slope
5: upper slope← new slope
6: if new slope<lower slope
7: lower slope← new slope
8: Calculate upper error and lower error;
9: if MAX(upper error, lower error)>ϵ

10: return cur position;
11: cur position++;
12: return cur position;

Algorithm 1.
To begin with, we set up a few parameters to better

illustrate the idea behind our design. We present upper slope
and lower slope as the maximum and minimum line slopes
that go through the first point and an intermediate point.
The upper slope and lower slope are used to calculate
the prediction error. The calculated prediction error will be
compared with the parameter ϵ, which is a GPL model’s
prediction error bound. Every time a new point is added to
a model, as shown in Algorithm 1, we check whether the
upper slope and lower slope need to be updated with the
added point. The next phase involves adding a new point to the
GPL model if max(upper error, lower error) ≤ ϵ. Once
max(upper error, lower error)>ϵ, the GPL algorithm will
make a split and a new GPL model is generated. Then, the
following data point will be used to initialize the next fresh
GPL model.

As shown in Fig. 4(a), points 1,2,3 initialize upper slope
and lower slope with blue lines. When point 4 is added, GPL
model updates lower slope with the line colored in red. After
point 5 is added, GPL model checks the upper error and
lower error is smaller than ϵ. Once the error of a new point
is bigger than ϵ, we repeat the GPL partition process with this
new and following points.

To expand the performance of a GPL model, we present a
series of optimizations for model training after the partition
processing. First, to decrease the prediction error of a GPL
model, we take an array gaps scheme to handle some coming
insertions into a model. Second, a key lookup process will first
search the upper model to locate a GPL model. The number
of GPL models in our experiments is small, so we use an
optimized binary search rather than a radix table. Third, for
searching in a GPL model, we use a bitmap to reduce the
unnecessary slot checks in the search procedure.

3) Algorithm comparison: The GPL algorithm gains ad-
vantages compared to other algorithms. When a data point is
located outside the linear function and leads to a prediction
error, this error will scale out during the following training
processing until it exceeds the threshold ϵ. The Shrinking
Cone algorithm mentioned in FITing-tree [4] uses two lines
to go through the same point to make segments. As shown in

90

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 12,2025 at 00:01:25 UTC from IEEE Xplore. Restrictions apply.

upper error

lower error

Posistion

Key

(a) GPL algorithm

Posistion

Key

(b) ShrinkingCone algorithm

1

2

3

4

5

1

2

3

4

Posistion

Key

(c) Comparsion between GPL and LPA

new slope

old slope

F(x)-error_bound
F(x)

LPA model

F(x)+error_bound GPL model

F(x)

upper slope

lower slope

begin/split pointnew slope

old slope

Fig. 4. Comparison between GPL algorithm in ALT-index, ShrinkingCone algorithm in FITing-tree, and LPA algorithm in FINEdex.

Fig. 4(b), the Shrinking Cone model checks whether a new
point is located within the area between two slopes. On the
contrary, when a new point (x,y) is added to the segment, the
model’s upper and lower slopes are updated to two lines that
pass through (x,y+error bound) and (x,y-error bound). This
will introduce more frequent updates of two slopes than GPL,
severely damaging the segment performance.

Moreover, in Fig. 4(c), we show how the LPA algorithm in
FINEdex and the GPL algorithm in ALT-index approximate
the CDF of a dataset. The ϵ of a GPL is the diagonal line
of the parallelogram, which is vertical to the x-axis. Based on
the similarity theorem of triangles, the prediction error of each
data point in this parallelogram is smaller than ϵ. However, the
LPA cannot make segments efficiently when it comes to too
many data points with small prediction errors. Besides, our
GPL algorithm takes into account these errors to help make
segments with O(n) complexity.

C. Optimized ART Layer

ART [8] is an optimized trie for main memory indexing
and adapting to data distribution. In ALT-index, we leverage
ART to accommodate the conflict data from the learned index
layer, ensuring accurate model predictions and faster queries.
Nevertheless, if the origin ART is used directly in the ALT-
index, it will incur expensive secondary search overhead.
Specifically, a conflict data query will find incorrect keys at
the predicted locations in the learned index layer. Then, an
expensive secondary search starting from the root node in
the ART will be needed to locate the data, leading to high
latency for the entire query operation. To solve this problem,
we propose an optimized ART (ART-OPT) scheme, which can
meet the following design goals.

Low latency. The model location has already restricted the
key to a small range in the learned index layer, so searching
from the root node of ART is a resource-wasting behavior.
ALT-index deploys a fast pointer buffer structure to link each
GPL model to the subtree of the ART, which can largely cut
down the overheads of ART layer.

Minimal space consumption. Introducing an extra fast
pointer buffer will consume space consumption in ART layer.

Thus, we improve our fast pointer buffer with a merge scheme
to minimize space consumption. Moreover, we only add a
variable to each ART node to identify the prefixes that
have already matched. These optimizations above can further
eliminate space consumption.

1) Fast pointer buffer construction: We propose a fast
pointer buffer between the learned index layer and ART to
improve ALT-index. The fast pointer buffer stores the pointers
from GPL models to the tree nodes in ART. The process
of building the fast pointer will begin after the entire hybrid
index has been initialized. 1⃝ We obtain the first keys from
two adjacent GPL models. 2⃝ We look up the maximum
corresponding prefix node in ART. As shown in Fig. 5, if the
query footprint of two keys is in different nodes, we create
a pointer to the parent node and add it to the fast pointer
buffer. 3⃝ We return the index of this fast pointer in the fast
pointer buffer array to the upper GPL model. Within the buffer,
duplicate fast pointers are merged. Consequently, the number
of fast pointers becomes less than that of GPL models.

2) Space efficiency optimization: First, although queries
for conflict data can easily jump to an ART node through
a fast pointer, we cannot get the prefix that has been matched
in the parent nodes. To configure the matched prefixes, we
add a variable called match level in each node to record
the length of the matched prefix to assist the fast pointer
lookup. Second, we find fast pointers pointing to the same
ART node, which causes redundant space. So we merge the
pointers pointing to the same node to ensure space efficiency.
Moreover, this approach can keep data consistent and simplify
the management of the fast pointers across different GPL
models during conflict insertions, especially when ART has
structure modifications.

3) Workflow of ART-OPT layer: The lookup workflow is
as follows. When a query in the learned index layer finds
the data in the expected slot is occupied, it retrieves the fast
pointer index saved in the current GPL model to look up
the fast pointer buffer. After locating the corresponding fast
pointer through this index, the query can continue directly
from the intermediate ART node pointed by the fast pointer.
Thus, ALT-index can finish the secondary query by traversing

91

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 12,2025 at 00:01:25 UTC from IEEE Xplore. Restrictions apply.

GPL model 0

first key: 0xabcd1000

f-index:1

GPL model 1

first key: 0xabcd2000

f-index:1

GPL model n-2

first key : 0xabefc100

f-index:k

GPL model n-1

first key : 0xabefc200

f-index before:0

GPL model n

first key : 0xabfa0000

f-index:0
...

Fast Pointer Buffer

index

offset

0

0xffff0001

1

0xffff0002

...

...

k

0xffff0005

k+1

0xffff0008

offset:0xffff0001

prefix:ab

offset:0xffff0002

prefix:cd

offset:0xffff0005
prefix before:efc

offset:0xffff0003

prefix:1000

offset:0xffff0004

prefix:2000

offset:0xffff0006

prefix:100

offset:0xffff0007

prefix:200

offset:0xffff0008

prefix:ef

prefix after:c

① Conflict insert to ART:0xabefd100

f-index after:k+1

②Trigger structure modifications

between ART nodes

③ Create new fast pointer

&&

Update f-index

offset:0xffff0009

prefix:d100

...

...

Fig. 5. Fast pointer construction and modification

this subtree of ART that can greatly alleviate the performance
bottleneck of accessing the root node in concurrency situations
and effectively cut down the latency.

Insertion is similar to the lookup in most conditions. How-
ever, if an insertion in ART-OPT layer causes the structure
modifications, the fast pointer may become invalid. These
invalid pointers can lead to illegal or wrong pointer accesses
and cause segment faults. We conclude these issues with two
specific scenarios.

1⃝ Prefix extraction. After inserting a conflict data item,
the node corresponding to a fast pointer undergoes a prefix
extraction operation. The newly extracted prefix will be put
into a newly created node and set as the parent node of the
former node. In this case, this GPL model’s fast pointer needs
to be updated to this newly created node, which ensures data
consistency in the fast pointer buffer. By the way, if the prefix
extraction operation affects a node without being pointed by
any fast pointers, then this structure modification will not cause
invalidation. These steps are shown clearly in Fig. 5.

2⃝ Node expansion. After inserting a conflict data item,
ART undergoes a node expansion operation during insertion
using the fast pointer (e.g., a node expands from 16-span to
48-span). ALT-index expands a node by creating a new one,
which indicates that the old offset stored in the fast pointer
buffer is invalid. In that case, the fast pointer buffer will find
that invalid pointer and update its value to prevent illegal visits.

D. Error bound and performance analysis

It is evident that the error bound has a substantial impact
on both the learned index and ART-OPT layers, which col-
lectively determine the overall performance of the ALT index.
Initially, the error bound influences the number of models in
the learned index layer. To find the relation between the error
bound and the number of GPL models, as shown in Fig. 6(a),
we first test the number of GPL models with different error
bounds. We observe an inversely proportional relationship

between the error bound and the total number of models when
initializing ALT-index with the same number of data. Based on
our test results, we briefly summarize an equation as follows:

Ntotal = δh ∗ ϵ ∗Nmodel (1)

In (1), ϵ is the error bound, and δh represents the difficulty
of fitting the CDF curve of a dataset with linear functions.
To reflect the number of data in the lower layer, we set α
representing the proportion of data in ART-OPT layer, shown
in (2).

NART = Ntotal ∗ α (2)

Moreover, based on the algorithm analysis in Fig. 4(c), ϵ
determines the size of the parallelogram of a GPL model. If we
replace an ϵ GPL model with n small GPL models equipped
with ϵ/n, the total size of these GPL parallelograms is n times
smaller than the old one. The bigger the total size of these
parallelograms, the more conflict data will be put into ART-
OPT layer. We use Sϵ to represent the total size of the GPL
parallelograms with ϵ error bound. Based on our analysis, we
can use the total size of GPL parallelograms to reflect the
number of conflict data in ART-OPT layer. Finally, the relation
between the error bound and conflict data in ART-OPT layer
is shown in (3).

NARTm

NARTn
≈ Sϵm

Sϵn

=
ϵm
ϵn

(3)

The average latency of ALT-index includes the latency in
two layers. In the learned index layer, the model locating
procedure consumes log2Nmodel latency, and the calculation
latency in a GPL model is constant. Lookup in ART-OPT layer
has O(k) complexity. Based on our analysis and the equations
above, the total average lookup latency for ϵ can be modeled
by the following expression as shown in (4), where kcal is
the calculation expense of GPL model, ϵ0 is the error bound
that can host the whole dataset in one GPL model, α0 is the
proportion of data in ART-OPT layer when there is only one
GPL model in the learned index layer, kART represents the
time complexity of the optimized ART, and c is a constant
representing the latency of a cache miss on the hardware.

Tavg(ϵ) = c [log2

(
Ntotal

δh ∗ ϵ

)
+ kcal︸ ︷︷ ︸

Tlearned index layer

+α0 ∗
ϵ

ϵ0
∗ kART︸ ︷︷ ︸

TART−OPT layer

] (4)

Through (4) we can find that the throughput largely depends
on the learned index layer when the error bound is small.
However, when the error bound increases, ART-OPT layer
will consume more time because of the increasing conflict
data. The constant value varies across different datasets. So
the optimal error bound depends on the data distribution of
each dataset.

T
′

avg(ϵ) = c [− 1

ln 2 ∗ ϵ
+

α0 ∗ kART

ϵ0
] (5)

In (5), the throughput will peak when the derivative of the
average latency function equals 0. However, we can only get

92

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 12,2025 at 00:01:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. The relationship between error bound and throughput of ALT-index
on four datasets.

the number of items in ALT-index Ntotal when we initialize
ALT-index, which strongly correlates with ϵ0. Thus, we make
a few assumptions about these constant values referring to
various real-world datasets and replace ϵ0 with Ntotal. Finally,
we suggest users set Ntotal/1000 as the error bound when
initializing ALT-index.

We test different error bounds on various datasets to verify
our conclusion. As shown in Fig. 6(b), the throughput will
quickly increase as the error bound increases when it is
small. As the error bound increases, the throughput increases
slower and finally begins to drop after it exceeds the peak
point, which corresponds to our latency formula. Even though
the throughput decreases after reaching the extreme point,
ALT-index still performs well. We called the area with slow
increasing or decreasing rates a “stable area”. This area ensures
the high performance of ALT-index even if our suggested error
bound based on our assumptions is not optimal across different
datasets.

E. Concurrency

ALT-index shows outstanding performance in concurrent
scenarios. First, the learned index layer can handle concur-
rency through an optimistic scheme with slot granularity.
Second, we use spin locks in the fast pointer buffer. Third, we
use an existing optimistic lock coupling implementation [22]
in ART-OPT layer. The following part discusses the different
concurrent issues of ALT-index.

1) Write-write conflicts: Write-write conflicts occur when
multiple threads simultaneously write data into two layers.
First, in the learned index layer, ALT-index assigns an atomic
variable to each data slot in the GPL model to record the
current data version. A writer will read the current version
number of the slot when a write operation begins. If no thread
is writing this slot (the version number is even), the writer will
increase the version number to odd. When the write operation
is completed, the version number will increase to even. When
other threads begin a write operation on the same slot, they
check the version number to prevent conflicts. If the version
number is odd, they will retry until the previous thread’s write
operation is completed and the version number is updated to
even before the current write operation is performed. Second,
new fast pointers are appended to the fast pointer buffer using
spin locks to address conflicts, and the concurrency control
of ART prevents the update conflicts of fast pointers. We

improve the write function of ART to fit our fast pointer design
mentioned in Section III-C in concurrent scenarios.

2) Read-write conflicts: For read-write conflicts, ALT-index
employs an optimistic scheme in the learned index layer to
ensure the correctness of data. Read operations will get the
version number of the data slot and retry if the version number
is odd. After retrieving the data from a slot, it will read the
version number to confirm the data is the latest. If the version
number is changed, the read operation will retry to get the
latest data. In addition, the existing optimistic lock coupling
implementation of ART with node granularity [22] to handle
read-write conflicts.

F. Dynamic Retraining

The cost associated with model reconstruction significantly
affects performance. We need to develop a dynamic adjustment
of the entire index to accommodate changes in data distri-
bution. To address this issue, we adopt a partial refactoring
strategy. The model is expanded only when the insertions of a
specific GPL model exceed its build size, suggesting that the
GPL model is crowded and the following insertions will be
put into ART layer. The dynamic retraining process consists
of three steps:

• Expansion preparation. We create a temporal empty
data buffer twice larger than the old GPL model. In
addition, we double the new train slope to the original
train slope.

• Data eviction. For an expansion GPL model, every
insertion will evict old data to the temporal buffer once
the predicted position of this key is occupied in the
GPL model. New data will be directly inserted into the
temporal buffer.

• Expansion finishing. When the number of insertions in
the temporal buffer equals that of the old GPL model,
we evict the remaining data in the old GPL model to the
temporal buffer and update the model pointer.

In addition, if we find a key in ART layer but the predicted
position in the GPL model is empty after the retraining, we
will write the data back to the GPL model and delete it from
ART. If the retraining GPL model is the last one, we will
create a new GPL model behind it to handle the insertions that
fall out of the range. Overall, a significant portion of the data
can be effectively stored in the learned index layer through
dynamic retraining, thereby maintaining the high performance
of ALT-index.

G. Practical Operations

ALT-index supports common operations. Every operation
may require two processes due to the hybrid construction. All
operations first find the corresponding GPL model through an
upper model using a binary search and look up the predicted
position of the requested key by a calculation. The procedures
of different operations became diverse after that.

Search and Update: If the predicted position is empty, it
indicates that this key does not exist, for even a conflict data
must be predicted to a position first. Otherwise, ALT-index

93

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 12,2025 at 00:01:25 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Search and Insert
1: Search (key)
2: gpl← get gpl(upper model, key)
3: pred pos← make prediction(gpl, key)
4: val← empty
5: if ! pred pos.occupied
6: return val
7: if gpl[pred pos].key == key
8: val← gpl[pred pos].val
9: else

10: val← get from art(key, gpl.fast index)
11: if gpl[pred pos].key == 0
12: gpl[pred pos]← write slot(key, val)
13: remove from art(key)
14: return val
15:
16: Insert (key, val)
17: gpl← get gpl(upper model, key)
18: pred pos← make prediction(gpl, key)
19: if pred pos.occupied && gpl[pred pos].key! = 0
20: ret← write to art(key, val, gpl.fast index)
21: else
22: gpl[pred pos]← write slot(key, val)
23: ret← true
24: return ret

will check whether the key stored in the predicted position is
correct. If the check fails, it uses the fast pointer index in the
GPL model to search in ART-OPT layer shown in Algorithm 2.
A write-back scheme will move the data from ART to GPL if
necessary. An update can locate the relevant data item through
a search operation and update data in place.

Insert and Remove: For insertion, ALT-index writes the
data into the empty slot in place if the predicted position
is empty. If not, it inserts the data into ART-OPT layer and
updates the fast pointer buffer if necessary. For remove, ALT-
index first locates the key through a search operation and sets
the key to zero for remove operations if the deletion happens
in GPL model. If not, it removes the key from ART-OPT layer
and updates the fast pointer buffer if needed.

Range Query: ALT-index finishes a range query in two
steps: a range query in the learned index layer and a range
query in ART-OPT layer. The final scan result is merged from
these two steps.

IV. EVALUATION

A. Experiments Setup

1) Datasets: The Search on Sorted Data (SOSD) bench-
mark is a toolset designed to test learned indexes. We select
two datasets from the SOSD [23] in our experiments. In
addition to these datasets, we utilize several real-world and
synthetic datasets to enhance the diversity of our experimental
data. Each of the datasets above contains 200 million 8-byte
records. Duplicated datasets are excluded because our work
and competitors don’t support them. (1) The “fb” dataset

consists of user IDs from Facebook. (2) The “libio” dataset
[19] represents the repository ID from the libraries.io website.
(3) The “osm” dataset consists of uniformly sampled loca-
tions from OpenStreetMap [20]. (4) The “longlat” dataset is
extracted from OpenStreetMap which combines longitudes and
latitudes using a transformation.

2) Workloads: We bulkload 50% of the datasets to ini-
tialize the indexes. The workload configurations are as fol-
lows: (1) Read-Only workload: 100% reads. (2) Read-Heavy
workload: 80% reads and 20% insertions. (3) Read-Write-
Balanced workload: 50% reads and 50% insertions. (4) Write-
Heavy workload: 20% reads and 80% insertions. (5) Write-
Only workload: 100% insertions. (6) Hot write workload: We
reserve 20M consecutive keys in each dataset for insertions
to trigger the retraining process frequently after initializing
indexes with 100M keys.(7) Scan workload: Uniformed 10
million scan queries containing 100 keys each. Read opera-
tions follow a zipfian distribution with 0.99 theta value, and
insertions are distributed uniformly in each dataset.

3) Competitors: We conduct thorough experiments be-
tween ALT-index and state-of-the-art learned indexes. XIndex
is an updatable learned index based on the RMI model,
supporting update operations through delta buffers associated
with each learned index model. FINEdex is based on the
LPA algorithm, enabling insertion operations via level bins
within each data slot. ALEX+ [24] and LIPP+ [14] are the
concurrent implementations of ALEX and LIPP using an
optimistic locking scheme. Besides, updatable learned indexes
such as FITing-tree and PGM-index do not support concurrent
scenarios, so we exclude them from our experiments. We add
ART [22] with optimistic lock scheme as a competitor.

4) Configurations: We adopt the settings recommended by
the authors for ALEX+, LIPP+, XIndex, and FINEdex. For
ALT-index, we set ϵ to bulkload number/1000 in the learned
index layer. The fast pointer and dynamic retraining scheme
are enabled by default.

5) Hardware and platform: The experiments are imple-
mented on a Linux server running Ubuntu 18.04, equipped
with two 18-core Intel(R) Xeon(R) Gold 6240 CPU clocked
at 2.60GHz, and 186GB of DRAM. We adopt the C++17 stan-
dard, and hyperthreading is disabled during our experiments to
ensure the stability of the results. Our code is compiled using
GCC 9.4.0 under the O3 optimization level.

B. Read-Only Workload

In read-only workload, ALT-index outperforms FINEdex,
XIndex, with throughput improvements of 104.8%, and
131.5%, respectively, as shown in Fig. 7(a). FINEdex and
XIndex suffer from prediction errors leading to considerable
secondary queries. ALT-index has competitive throughput with
ALEX+ and LIPP+, attributed to the flattened learned index
layer. In addition, the two-tier data structure in ALT-index
has low tail latency. This reflects that our fast pointer buffer
scheme has largely cut down the search overhead in ART.

94

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 12,2025 at 00:01:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Throughput and P99.9 tail latency under various workloads using 32 threads on four datasets.

Fig. 8. Memory overhead on different datasets is shown in (a). Hot write and short scan workload are evaluated in (b-c). The throughput with different init
table sizes and skewed workload on the osm dataset are concluded in (d-e). All experiments use 32 threads.

C. Read-Write Workloads

ALT-index continues to exhibit excellent performance com-
pared with competitors in read-write workloads. The result is
shown in Fig. 7(b-e). As the proportion of write operations
increases, both ALT-index and other indexes suffer a decline
in throughput to varying degrees. FINEdex and XIndex store
newly inserted data in delta buffers, which exhibit degraded
performance as the data increases. Because of the small
granularity of delta buffers in FINEdex, the tail latency and
throughput perform better than XIndex.

LIPP+ has a bottleneck in concurrent write scenarios caused
by its statistic updates. Notably, ALEX+ gains a high tail
latency due to its data-shifting scheme when the insert ratio
increases. Origin ART design always has a lower throughput
than ALT-index due to node traverses. Overall, ALT-index
keeps both a high throughput and cuts down the tail latency.

D. Space Overhead

We initialize the indexes with 100M keys and insert the
remaining keys. As shown in Fig. 8(a), the test results reveal
that ALT-index takes less memory space than others except
ALEX+. LIPP+ reserves too many empty slots in its nodes to

improve write performance, but only a few are used during the
insertion. Both XIndex and FINEdex cost more space because
of their delta buffer scheme.

E. Hot Write and Scan Workloads

We use the hot write experiments to reflect the performance
of indexes when the data distribution has changed. In Fig. 8(b),
ALT-index shows better throughput than others due to our
dynamic retraining scheme, in which the subsequent insertions
and queries average the retraining expense. XIndex has a stable
performance because it introduces several background threads
to handle the retraining process while others are not.

ALT-index separates the linear and conflict data, leading
to dual scans in GPL models and ART-OPT. We use a
scan workload to reflect this factor. As shown in Fig. 8(c),
ALEX+ has the best scan performance, but ALT-index has a
competitive performance with the rest of the learned indexes.

F. Init Size and Skewed Workload

To explore the influence of init size factor, we present
the read throughput performance of 32 threads with different
initialization data ratios in Fig. 8(d). As the initial data ratio

95

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 12,2025 at 00:01:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. The indexes scalability under read-write-balanced workloads. Evaluated on four datasets.

Fig. 10. The average lookup length in ART related to fast pointer buffer is shown in (a). The fast pointer buffer with and without the merge scheme are
compared in (b). Data distribution in different ALT-index layers is shown in (c). Bulkload time is shown in (d).

increases, the indexes’ performance gradually declines. For
other competitors, a larger initialization data quantity leads to
a higher number of models, which results in extra overhead
in model locating. ALT-index effectively ensures the number
of models within an expected range for different init sizes
through the GPL algorithm. Overall, ALT-index shows better
performance than competitors as the init size increases.

In our experiments, we adjust the θ of the zipfian dis-
tribution for lookups. As shown in Fig. 8(e), the improved
throughput is attributed to a higher cache hit ratio when the
skewness increases. Still, ALT-index keeps leading when the
skewness increases, which indicates that our hybrid design is
friendly for hotspot queries.

G. Scalability

The scalability test is under read-write-balanced workloads,
as shown in Fig. 9. ALT-index outperforms other indexes when
the thread number increases. LIPP+ shows limited scalability
as we expected. FINEdex and XIndex perform good scala-
bility, but the prediction error problem restricts its increasing
speed when the thread number scales out. Notably, when the
thread number increases from 16 to 32, ALEX+ gains less
increment. This attributes to high write-amplification and high
prediction overheads, which will introduce memory bandwidth
exhaustion. Overall, ALT-index shows the best scalability out
of other learned indexes.

H. Inside Analysis of ALT-index

1) Factor of fast pointer and merge scheme: The fast
pointer buffer with merge scheme can merge the redundant
fast pointers to improve the read performance with minimal
memory consumption and avoid inconsistencies in ART-OPT
layer caused by node structure adjustments. To explore their
effectiveness, we produce a deep analysis using four datasets
under the read-only workload. First, we measure the average
prefix matches of the conflict data in ART-OPT layer. The
result is shown in Fig. 10(a), we find that the fast pointer
buffer reduces the average lookup length, which accelerates
the lookup performance in ART. Then, we count the number
of fast pointers in the fast pointer buffer with and without the
merge scheme. As shown in Fig. 10(b), the merge scheme
significantly cut down the number of fast pointers, further
minimizing the memory consumption of ALT-index.

2) Data distribution and bulkload time: We measure the
number of data in the learned index and ART-OPT layers for
each of the four datasets. As shown in Fig. 10(c), the test
results indicate that more than 50% of the real-world datasets
can be absorbed by the learned index layer. In addition,
the remaining data are compressed by ART-OPT, thereby
improving space efficiency. Specifically, over 80% of the
whole dataset is accommodated by the learned index layer on
the libio dataset. Moreover, as shown in Fig. 10(d), ALT-index
only spends a short time to bulkload compared with ALEX+
and LIPP+. Overall, ALT-index performs well as expected.

96

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 12,2025 at 00:01:25 UTC from IEEE Xplore. Restrictions apply.

V. DISCUSSION

Replacement or Accelerator. None of the current learned
index structures can replace the traditional index completely
in modern database systems. ALT-index takes a different ap-
proach using the learned index similar to the high-speed cache
layer in computer architectures. It places a portion of the data
in the high-speed learned index layer to accelerate accesses,
whereas the remaining data are stored in the underlying ART-
OPT. By leveraging this hybrid design, ALT-index maximizes
the efficiency of learned indexes in terms of read performance
while minimizing space overhead [1]. It significantly improves
performance compared to the existing learned indexes and
traditional tree-based indexes.

Limitations & Strengths. ALT-index destructs the data into
two layers, which harms the range query performance of the
index. Moreover, ALT-index uses ART-OPT as the second
layer, but when it comes to disk-intensive scenarios, frequent
random read/write operations caused by the node pointers
will destroy the performance. In our future work, we will
delve deeper into these directions and conduct more thorough
investigations to improve our design. Besides, delta buffers cut
down the overhead of insertions, but users must pre-allocate
extra space for delta buffers. ALT-index’s design can replace
these delta buffers into a single ART to save space, and the
fast pointer buffer can efficiently help each GPL model get the
intermediate node in ART-OPT. In this way, ALT-index draws
on the insertion advantages of delta buffers through the fast
pointer buffer but cuts down the space cost by merging these
buffers into a single ART.

VI. RELATED WORK

Hybrid Index. The concept of hybrid index data structures
has received significant attention over time [25]. Masstree
employs a hybrid indexing structure that combines B+ trees
and trie trees. Specifically, Masstree [10] utilizes B+ trees as
the internal nodes of the traditional trie tree, which expands
the span of the trie tree while reducing its height, thereby
achieving improved read and write performance. Christoph et
al. [26] proposed a strategy to identify hot and cold nodes
in the index structure. By analyzing the access patterns of
the nodes, the encoding scheme of nodes is dynamically
adjusted to strike a balance between performance and space
efficiency. The wormhole [27], on the other hand, explores
the replacement of the internal nodes of the B+ tree with
trie trees. It accelerates the lookup operation by employing
a hash table as the internal nodes of the B+ tree, thereby
ensuring performance gains while conserving space. Further-
more, hybrid indexing methodologies, as referenced in the
work of Shahvarani et al. [28] and Su [29], have shown a
marked improvement in performance optimization for specific
heterogeneous platforms, which is also a potential area for
the learned index. ALT-index is the first work that attempts to
introduce the learned index and ART to the hybrid index area.
It addresses insertion and concurrency issues efficiently with
careful construction and optimization.

Learned structures in database systems. Numerous de-
sign approaches have emerged for learned indexes, with
a significant focus on addressing the challenges related to
write operations. ALEX [5], for instance, tackles data inser-
tion by reserving sparse slots within the data array. LIPP
[6] effectively mitigates the overhead of secondary queries
by segregating conflicting predicted data into separate child
nodes. FINEdex and XIndex partially address concurrency
concerns, their performance advantages over traditional in-
dexing methods are limited. PGM-index [7] achieves a high
space utilization rate by utilizing a multi-layer learned index
model. Through a progressive narrowing down process based
on layered predictions of a given key, the query range interval
is gradually reduced until a smaller model can efficiently
handle the query operation. NFL [30] enhances the fitting
performance of linear models by transforming the original
CDF curve into a linear approximation using a simple neu-
ral network model. Notably, the training task for the NFL
model is offloaded to specialized GPUs, thereby reducing the
computational burden on CPUs and memory resources. Fur-
thermore, other research efforts in the field of learned indexes
are concentrated on multidimensional data [31]–[36], string
data [37], and applications in diverse areas [38]–[40]. ALT-
index presents a novel solution that addresses shortcomings in
insertions, improves concurrency, and cuts down the secondary
search costs caused by prediction errors.

VII. CONCLUSION

In this paper, we introduce ALT-index, a novel hybrid
index scheme that combines a read-efficient learned index
with an insert-efficient ART. ALT-index stores linear data in
the learned index layer and puts the data causing prediction
errors in ART-OPT layer. Then in the upper learned index
layer, we develop a new GPL segmentation algorithm to
support flattened data structure for concurrency. In ART-
OPT layer, we design a fast pointer buffer with a merge
scheme to improve the access speed in ART. Moreover, a
dynamic training process can redistribute the data if necessary.
Eventually, our experimental results demonstrate that ALT-
index exhibits excellent performance and concurrency, and
outperforms existing updatable learned indexes by a factor
of 1.9x–2.3x in real-world datasets under read-write-balance
workloads, respectively.

ACKNOWLEDGMENTS

This work is funded by the National Key Research and
Development Program (No. 2022YFB4501300), the National
Natural Science Foundation of China (No. U22A2027 and
61821003), the Project of Shenzhen Technology Scheme
(JCYJ20210324141601005), the Open Project Program of
WNLO (No. 2023WNLOKF006), and the Natural Sci-
ence Foundation of Hubei Province (No. 2024AFB263 and
Q20231409). We also thank the anonymous reviewers for
providing insightful comments to improve the paper.

97

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 12,2025 at 00:01:25 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The Case for
Learned Index Structures,” in Proceedings of the 2018 ACM SIGMOD
International Conference on Management of Data, 2018, pp. 489–504.

[2] P. Li, Y. Hua, J. Jia, and P. Zuo, “FINEdex: a fine-grained learned index
scheme for scalable and concurrent memory systems,” Proceedings of
the VLDB Endowment, vol. 15, no. 2, pp. 321–334, 2021.

[3] C. Tang, Y. Wang, Z. Dong, G. Hu, Z. Wang, M. Wang, and H. Chen,
“XIndex: a scalable learned index for multicore data storage,” in
Proceedings of the 25th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. Association for Computing
Machinery, 2020, pp. 308–320.

[4] A. Galakatos, M. Markovitch, C. Binnig, R. Fonseca, and T. Kraska,
“FITing-Tree: A Data-aware Index Structure,” in Proceedings of the
2019 ACM SIGMOD International Conference on Management of Data.
Association for Computing Machinery, 2019, pp. 1189–1206.

[5] J. Ding, U. F. Minhas, J. Yu, C. Wang, J. Do, Y. Li, H. Zhang,
B. Chandramouli, J. Gehrke, D. Kossmann et al., “Alex: an updatable
adaptive learned index,” in Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, 2020, pp. 969–984.

[6] J. Wu, Y. Zhang, S. Chen, J. Wang, Y. Chen, and C. Xing, “Updat-
able learned index with precise positions,” Proceedings of the VLDB
Endowment, vol. 14, no. 8, pp. 1276–1288, 2021.

[7] P. Ferragina and G. Vinciguerra, “The PGM-index: a fully-dynamic com-
pressed learned index with provable worst-case bounds,” Proceedings of
the VLDB Endowment, vol. 13, no. 8, pp. 1162–1175, 2020.

[8] V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree: ARTful
indexing for main-memory databases,” in 2013 IEEE 29th International
Conference on Data Engineering (ICDE), 2013, pp. 38–49.

[9] R. Binna, E. Zangerle, M. Pichl, G. Specht, and V. Leis, “HOT: A
Height Optimized Trie Index for Main-Memory Database Systems,” in
Proceedings of the 2018 International Conference on Management of
Data, 2018, pp. 521–534.

[10] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast multicore
key-value storage,” in Proceedings of the 7th ACM european conference
on Computer Systems, 2012, pp. 183–196.

[11] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P.
Jones, S. Madden, M. Stonebraker, Y. Zhang et al., “H-store: a high-
performance, distributed main memory transaction processing system,”
Proceedings of the VLDB Endowment, vol. 1, no. 2, pp. 1496–1499,
2008.

[12] M. Maltry and J. Dittrich, “A critical analysis of recursive model
indexes,” Proceedings of the VLDB Endowment, vol. 15, no. 5, pp. 1079–
1091, 2022.

[13] R. Marcus, A. Kipf, A. van Renen, M. Stoian, S. Misra, A. Kemper,
T. Neumann, and T. Kraska, “Benchmarking learned indexes,” Proceed-
ings of the VLDB Endowment, vol. 14, pp. 1–13, 2020.

[14] C. Wongkham, B. Lu, C. Liu, Z. Zhong, E. Lo, and T. Wang, “Are up-
datable learned indexes ready?” Proceedings of the VLDB Endowment,
vol. 15, no. 11, pp. 3004–3017, 2022.

[15] G. Graefe, Encyclopedia of Database Systems, 2009.
[16] I. Sabek, K. Vaidya, D. Horn, A. Kipf, M. Mitzenmacher, and T. Kraska,

“Can learned models replace hash functions?” Proceedings of the VLDB
Endowment, vol. 16, no. 3, pp. 532–545, 2022.

[17] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska, and
T. Neumann, “RadixSpline: a single-pass learned index,” in Proceedings
of the Third International Workshop on Exploiting Artificial Intelligence
Techniques for Data Management, 2020, pp. 1–5.

[18] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree (lsm-tree),” Acta Informatica, vol. 33, pp. 351–385, 1996.

[19] C. E. Lopez and C. Gallemore, “An augmented multilingual twitter
dataset for studying the covid-19 infodemic,” Social Network Analysis
and Mining, vol. 11, no. 1, p. 102, 2021.

[20] “OpenStreetMap,” 2017. [Online]. Available:
http://console.cloud.google.com/marketplace/details/openstreetmap/geo-
openstreetmap

[21] J. Ge, B. Shi, Y. Chai, Y. Luo, Y. Guo, Y. He, and Y. Chai, “Cutting
learned index into pieces: An in-depth inquiry into updatable learned
indexes,” in 2023 IEEE 39th International Conference on Data Engi-
neering (ICDE), 2023, pp. 315–327.

[22] V. Leis, F. Scheibner, A. Kemper, and T. Neumann, “The art of practical
synchronization,” in Proceedings of the 12th International Workshop on
Data Management on New Hardware, 2016, pp. 1–8.

[23] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska, and
T. Neumann, “Sosd: A benchmark for learned indexes,” arXiv preprint
arXiv:1911.13014, 2019.

[24] B. Lu, J. Ding, E. Lo, U. F. Minhas, and T. Wang, “APEX: a high-
performance learned index on persistent memory,” Proceedings of the
VLDB Endowment, vol. 15, no. 3, pp. 597–610, 2021.

[25] H. Zhang, D. G. Andersen, A. Pavlo, M. Kaminsky, L. Ma, and R. Shen,
“Reducing the storage overhead of main-memory oltp databases with
hybrid indexes,” in Proceedings of the 2016 International Conference
on Management of Data, 2016, pp. 1567–1581.

[26] C. Anneser, A. Kipf, H. Zhang, T. Neumann, and A. Kemper, “Adaptive
Hybrid Indexes,” in Proceedings of the 2022 International Conference
on Management of Data, 2022, pp. 1626–1639.

[27] X. Wu, F. Ni, and S. Jiang, “Wormhole: A fast ordered index for in-
memory data management,” in Proceedings of the Fourteenth EuroSys
Conference 2019, 2019, pp. 1–16.

[28] A. Shahvarani and H.-A. Jacobsen, “A hybrid b+-tree as solution for
in-memory indexing on cpu-gpu heterogeneous computing platforms,”
in Proceedings of the 2016 International Conference on Management of
Data, 2016, pp. 1523–1538.

[29] X. Su, J. Qi, and E. Tanin, “A fast hybrid spatial index with external
memory support,” in 2023 IEEE 39th International Conference on Data
Engineering Workshops (ICDEW), 2023, pp. 67–73.

[30] S. Wu, Y. Cui, J. Yu, X. Sun, T.-W. Kuo, and C. J. Xue, “NFL: robust
learned index via distribution transformation,” Proceedings of the VLDB
Endowment, vol. 15, no. 10, pp. 2188–2200, 2022.

[31] P. Li, H. Lu, Q. Zheng, L. Yang, and G. Pan, “LISA: A learned index
structure for spatial data,” in Proceedings of the 2020 ACM SIGMOD
international conference on management of data, 2020, pp. 2119–2133.

[32] J. Ding, V. Nathan, M. Alizadeh, and T. Kraska, “Tsunami: a learned
multi-dimensional index for correlated data and skewed workloads,”
Proceedings of the VLDB Endowment, vol. 14, no. 2, p. 74–86, 2020.

[33] A. Davitkova, E. Milchevski, and S. Michel, “The ML-Index: A Mul-
tidimensional, Learned Index for Point, Range, and Nearest-Neighbor
Queries,” 2020.

[34] H. Wang, X. Fu, J. Xu, and H. Lu, “Learned index for spatial queries,” in
2019 20th IEEE International Conference on Mobile Data Management
(MDM), 2019, pp. 569–574.

[35] V. Nathan, J. Ding, M. Alizadeh, and T. Kraska, “Learning multi-
dimensional indexes,” in Proceedings of the 2020 ACM SIGMOD
international conference on management of data, 2020, pp. 985–1000.

[36] A. Al-Mamun, H. Wu, and W. G. Aref, “A tutorial on learned multi-
dimensional indexes,” in Proceedings of the 28th International Confer-
ence on Advances in Geographic Information Systems, 2020, pp. 1–4.

[37] Y. Wang, C. Tang, Z. Wang, and H. Chen, “Sindex: a scalable learned
index for string keys,” in Proceedings of the 11th ACM SIGOPS Asia-
Pacific Workshop on Systems, 2020, pp. 17–24.

[38] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, J. Ding, A. Kristo,
G. Leclerc, S. Madden, H. Mao, and V. Nathan, “Sagedb: A learned
database system,” 2021.

[39] Y. Dai, Y. Xu, A. Ganesan, R. Alagappan, B. Kroth, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “From wisckey to bourbon: A
learned index for log-structured merge trees,” in Proceedings of the 14th
USENIX Conference on Operating Systems Design and Implementation,
2020, pp. 155–171.

[40] M. Mitzenmacher, “A model for learned bloom filters and related
structures,” arXiv preprint arXiv:1802.00884, 2018.

98

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 12,2025 at 00:01:25 UTC from IEEE Xplore. Restrictions apply.

